新审视零阶优化在内存高效大模型微调中的应用

人工智能咨询培训老师叶梓 转载标明出处

随着大模型模型规模的增大,反向传播(BP)所需的内存开销也日益增加,这对内存效率提出了挑战。尤其是在设备上训练等内存效率至关重要的应用场景中,解决这一问题变得尤为迫切。

本文提出了一种新的方法,即在LLM微调过程中,采用零阶(Zeroth-Order, ZO)优化算法替代传统的需要反向传播的一阶(First-Order, FO)优化算法,以降低内存成本。这种BP-free的优化方法基于Malladi等人在2023年提出的初始概念。

论文地址:https://arxiv.org/abs/2402.11592

项目地址:https://github.com/ZO-Bench/ZO-LLM

方法

ZO优化作为一种不依赖梯度信息的替代方法,通过基于函数值的梯度估计来近似传统的一阶梯度。这种方法通常反映了其对应的一阶优化算法的算法框架,但它用ZO梯度估计替换了FO梯度作为下降方向。文中特别关注了随机梯度估计器(Randomized Gradient Estimator, RGE),这是一种依赖于沿随机选择的方向向量的函数值的有限差分的方法。

RGE的数学表达式,用来近似函数在点x处的梯度: 这里,是从标准高斯分布

### YOLOv5小模型训练教程与参数优化 YOLOv5 是一种高效的实时目标检测框架,支持多种规模的模型训练。对于小模型的训练,通常会选择较小的预训练权重文件(如 `yolov5s.pt`),并根据具体需求调整相关参数。 #### 1. 小模型的选择 在 YOLOv5 中,提供了不同规模的模型供选择,从小到大依次为 `yolov5n`, `yolov5s`, `yolov5m`, `yolov5l`, 和 `yolov5x`。其中,`yolov5s` 或者更小的 `yolov5n` 更适合资源受限环境下的应用[^1]。这些小型模型不仅体积更小,而且推理速度更快,尤其适用于嵌入式设备或移动平台。 #### 2. 训练命令示例 以下是一个典型的单 GPU 训练命令,使用的是最小的 `yolov5s` 模型: ```bash python train.py --img-size 320 --batch-size 16 --epochs 50 \ --data your_data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt ``` - **`--img-size`**: 图像输入尺寸设置为 320×320,这有助于减少计算量和内存占用。 - **`--batch-size`**: 批处理大小设为 16,可以根据显存容量适当调整。 - **`--epochs`**: 设置训练轮数为 50 轮,实际可根据收敛情况增减。 - **`--data`**: 数据集配置文件路径,需提前准备好 YAML 文件描述数据集结构。 - **`--cfg`**: 模型架构配置文件路径。 - **`--weights`**: 初始权重文件路径,推荐使用官方提供的预训练权重以加速收敛[^3]。 #### 3. 参数优化策略 为了进一步提升小模型的表现,可以从以下几个方面入手: ##### (1) 输入图像分辨率调整 降低输入图像分辨率能够显著减少计算开销,但可能影响精度。建议尝试不同的分辨率(如 320, 416, 512 等)找到最佳平衡点。 ##### (2) 学习率调度器 合理设计学习率变化曲线对训练效果至关重要。默认情况下,YOLOv5 已经内置了良好的学习率衰减机制,但如果发现过拟合现象或者收敛缓慢,可手动微调学习率范围或引入余弦退火等高级方法[^5]。 ##### (3) 自定义损失函数 针对特定应用场景,可以考虑改进损失函数的设计。例如,在骨髓细胞检测任务中,通过增强粗粒度类和细粒度类之间的关系来构建的损失项,从而获得更高的 mAP 值[^4]。 ##### (4) 数据增强技术 充分挖掘数据潜力也是提高性能的重要手段之一。除了常规的数据扩充操作外,还可以探索 MixUp、CutMix 等混合样本生成方式增加多样性[^2]。 #### 4. 性能评估与调试技巧 完成初步训练之后,应仔细分析验证集上的表现指标,并据此决定后续动作方向。如果存在明显的偏差问题,则需要重审视标注质量;若是泛化能力不足,则可通过正则化措施加以缓解。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值