一个正确的数学模型应当是形式上简单的。一个正确的模型一开始可能还不如一个精雕细琢过的错误模型来的准确,但是如果我们认定大致方向是对的,就应该坚持下去。大量准确的数据对研发很重要。正确的模型也可能收到噪音干扰,而显得不准确;这时不应该用一种凑合的修正方法加以弥补,而是要找到噪音的根源,这也许能通往重大的发现。