复杂处理下的因果推断--综述

文章聚焦于复杂处理设置下因果推断方法的综述性研究,涵盖了多值、连续以及捆绑处理等复杂情况。

  • 首先介绍了问题背景、基本假设及其变化,并对传统的二元处理设置进行了简要回顾。

  • 随后,详细探讨了处理多值、连续和捆绑处理的不同方法,并根据是否遵循无混淆假设将这些方法进行分类。

  • 此外,文中还梳理了可用于研究的公开数据集和开源代码,并指出了该领域面临的挑战与未来探索的方向。

这是首次将这三种复杂处理统一归纳,并提供了全面的文献综述。

在这里插入图片描述

1 二元处理

二元处理方法一般分为无混淆假设下的方法和存在未观测混杂因素的方法。

(1)无混淆假设下的方法:

  • 基于倾向得分的方法(Propensity Score-based Methods):这种方法的核心思想是通过预测单位接受处理的概率来平衡观察到的协变量。

  • 双重稳健方法(Doubly Robust Methods):这些方法结合了倾向得分和结果回归模型的优点,即使其中一个模型被错误指定也能得到一致的估计。

  • 协变量平衡方法(Covariate Balancing Methods):这类方法旨在确保处理组和对照组之间的协变量分布相似。

  • 树基方法(Tree-based Methods):使用决

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值