探索多模态隐喻检测中的思维链

文章的主要内容是关于多模态隐喻检测的研究,提出了一种名为C4MMD的框架,利用链式思维(CoT)方法来提高小型模型在隐喻检测任务中的表现。隐喻广泛存在于广告和互联网迷因中,但由于这些迷因的多样性和文本数据的不足,传统的检测方法面临挑战。研究中,作者设计了一个三步流程,通过大型语言模型(MLLMs)提取和整合图像与文本的知识,进而增强模型对隐喻特征的识别能力。实验结果表明,该方法显著提高了小型模型的隐喻检测能力,超越了现有的模型表现。这项研究为利用MLLMs在复杂语言与视觉任务中的应用开辟了新的方向。

1 C4MMD框架

知识摘要模块

·该模块通过利用大型语言模型(MLLMs)来提取和整合多模态信息。首先,它设计了一种三步模板,分别关注图像和文本的信息,并在最后一步将两者结合,以便于获取更深层次的语义理解。

· 链式思维(CoT)方法

·通过链式思维方法,框架引导MLLMs逐步理解图像和文本的内容。第一步聚焦于图像的描述,第二步则分析文本的含义,最后将这两部分信息融合,形成对隐喻更全面的理解。

· 多模态融合结构

·C4MMD框架还设计了一个多模态融合结构,用于有效地将提取到的信息转化为隐喻特征。这一结构能够将来自不同模态的特征进行整合,提升隐喻检测的准确性。

· 辅助任务

·框架中还包含一些辅助任务,旨在进一步提高模型对隐喻特征的识别能力。这些辅助任务帮助模型在处理图像和文本的同时,保持对隐喻存在与否的判断。

· 小型模型的增强

·C4MMD的设计目标是提升小型模型的表现。通过将大型模型的知识传递到小型模型中,框架有效地提高了小型模型在多模态隐喻检测任务中的能力。

在这里插入图片描述

2 结语

文章提出了一种名为C4MMD的框架,通过链式思维方法增强智能体对多模态隐喻的检测能力,显著提高了模型的表现。

论文题目: Exploring Chain-of-Thought for Multi-modal Metaphor Detection

论文链接: https://aclanthology.org/2024.acl-long.6/

PS: 欢迎大家扫码关注公众号_,我们一起在AI的世界中探索前行,期待共同进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值