文章的主要内容是关于多模态隐喻检测的研究,提出了一种名为C4MMD的框架,利用链式思维(CoT)方法来提高小型模型在隐喻检测任务中的表现。隐喻广泛存在于广告和互联网迷因中,但由于这些迷因的多样性和文本数据的不足,传统的检测方法面临挑战。研究中,作者设计了一个三步流程,通过大型语言模型(MLLMs)提取和整合图像与文本的知识,进而增强模型对隐喻特征的识别能力。实验结果表明,该方法显著提高了小型模型的隐喻检测能力,超越了现有的模型表现。这项研究为利用MLLMs在复杂语言与视觉任务中的应用开辟了新的方向。
1 C4MMD框架
知识摘要模块
·该模块通过利用大型语言模型(MLLMs)来提取和整合多模态信息。首先,它设计了一种三步模板,分别关注图像和文本的信息,并在最后一步将两者结合,以便于获取更深层次的语义理解。
· 链式思维(CoT)方法
·通过链式思维方法,框架引导MLLMs逐步理解图像和文本的内容。第一步聚焦于图像的描述,第二步则分析文本的含义,最后将这两部分信息融合,形成对隐喻更全面的理解。
· 多模态融合结构
·C4MMD框架还设计了一个多模态融合结构,用于有效地将提取到的信息转化为隐喻特征。这一结构能够将来自不同模态的特征进行整合,提升隐喻检测的准确性。
· 辅助任务
·框架中还包含一些辅助任务,旨在进一步提高模型对隐喻特征的识别能力。这些辅助任务帮助模型在处理图像和文本的同时,保持对隐喻存在与否的判断。
· 小型模型的增强
·C4MMD的设计目标是提升小型模型的表现。通过将大型模型的知识传递到小型模型中,框架有效地提高了小型模型在多模态隐喻检测任务中的能力。
2 结语
文章提出了一种名为C4MMD的框架,通过链式思维方法增强智能体对多模态隐喻的检测能力,显著提高了模型的表现。
论文题目: Exploring Chain-of-Thought for Multi-modal Metaphor Detection
论文链接: https://aclanthology.org/2024.acl-long.6/
PS: 欢迎大家扫码关注公众号_,我们一起在AI的世界中探索前行,期待共同进步!