九、分枝切割算法

1、Gomory切割的算法原理

\qquad 考虑有一个等式的形式如下所示:
I L + F = f IL+F=f IL+F=f
\qquad 其中各项满足以下性质:

  • I L IL IL是一个整数值的表达式
  • F F F是一个严格正分数的和
  • f < 1 f<1 f<1是一个严格正的分数
    \qquad 从而可以得出一个结论: F ≥ F \geq F f。从而在拿到任意一个等式之后,可以将等式中的项分别凑到 I L IL IL F F F f f f三项中,之后根据 F ≥ F \geq F f 便可以得到有效的Gomory不等式。将Gomory不等式加到混合整数线性规划问题的线性松弛问题中之后,可以保证:
  • 切割掉一部分原本线性松弛问题的最优解
  • 同时保证所有原本混合整数线性规划的可行解都被保留
    \qquad 对于一个单纯型表形式的非整数解里面,必然有一个横行,
    x i = b + f − ∑ j a j x j ( 1 ) x_i = b+f-\sum_j a_jx_j \qquad (1) xi=b+fjajxj(1)
    \qquad 其中 b b b是整数且分数 f f f满足 0 ≤ f < 1 0 \leq f < 1 0f<1,将上等式(1)改写为:
    x i + ∑ j a j x j = b + f x i + ∑ j f l o o r ( a j ) x j − b + ∑ j ( a j − f l o o r ( a j ) ) x j = f x_i+\sum_j a_jx_j=b+f \\ x_i+\sum_j floor(a_j)x_j-b+\sum_j (a_j-floor(a_j))x_j=f xi+jajxj=b+fxi+jfloor(aj)xjb+j(ajfloor(aj))xj=f
    \qquad 则在任意整数解里,有下式(2)满足
    ∑ j ( a j − f l o o r ( a j ) ) x j ≥ f ( 2 ) \sum_j(a_j-floor(a_j))x_j \geq f \qquad (2) j(ajfloor(aj))xjf(2)
    \qquad 不等式(2)即为Gomory不等式的一般形式。
    \qquad 除了Gomory不等式之外,还有其他一般性的不等式,如mixed integer roundin不等式和lift and project不等式;其他结构性的割约束,如knapsack cover不等式和Clique不等式。在分枝切割算法中,将不等式的添加和分枝策略进行结合,从而避免单纯割平面算法中系数爆炸的问题。

2、分枝切割算法

\qquad 分枝切割算法的流程如下所示:
在这里插入图片描述
\qquad 从上述流程可以看出,分枝切割算法和分枝定界算法的流程基本相似,知识在分枝之前,首先需要检查当前分数结点中有没有可以添加的有效不等式,讲这些不等式进行添加到线性规划模型中提升模型的下界。

THE END

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dragon Fly

多谢老板赏钱[抱拳抱拳抱拳]

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值