Oriented R-CNN for Object Detection 论文解读

论文基本信息

论文概要

解决问题

当前先进的双阶段有向目标检测方法需要通过耗时的过程来产生有向候选框。这极大的制约了有向目标检测的速度,从而成为先进有向目标检测的计算瓶颈。本文提出了一种简单、有效的有向目标检测方法,称为Oriented R-CNN。在DOTA上达到了75.87%的mAP,在HRSC2016上达到了96.50%的mAP。基于RTX2080ti,图片大小1024*1024的分辨率,fps为15.1

已有方法

方法流程优缺点应用
Aa 产生候选框 b 从候选框中提炼信息,并对候选框进行分类缺:在产生候选框的时候计算耗时大Fast/Faster RCNN [10 11 32]

proposals生成方法

方法方法概述优缺点
图a(Oriented RPN[26])每一个像素点设置54个anchors(3 scales×3 ratios×6 angles)优:增加了recall 并且在对象稀疏时效果较好 缺点:产生的anchors太多了,太耗费时间
图b (RoI transformer[7])从 horizontal RoI中学习有方向的propocals优点:不用产生太多的anchors 缺点:训练参数多,且同样很耗时
图c(oriented RPN)本文只用了一个轻量的FCN,网络输出6个值来表示一个proposal优点:参数较少,减少了过拟合的风险,并且训练很快

图1

方法/研究内容

Oriented R-CNN在backbone产生featuremap后主要分为两个阶段,第一个阶段是Orieated RPN(上图c)该阶段的回归branch中增加了两个回归参数。并且,本文提出了midpoint offset (中心点偏移)的方法来表示proposal。第二阶段是Orieated R-CNN detection head,利用rotated RoI alignment从每个proposal中提取固定大小的特征向量来进行分类和回归。

创新点

  • 设计了一种高效的oriented RPN,打破了在产生oriented proposals的计算瓶颈。
  • 设计了midpoint offset的方法来表示proposals。

性能/效果

mAP

数据集backbonemAP
DOTAResNet-50-FPN75.87%
HRSC2016ResNet-50-FPN96.50%

速度

图片分辨率GPUspeed
1024*1024RTX2080t15.1fps

不足

算法流程

整体结构

在这里插入图片描述
图片输入之后,经过backbone生成特征图,将特征图送入oriented RPN中,生成一系列的高质量的oriented proposals,再将这些proposals和特征图一块送入第二阶段的oriented R-CNN Head中,对每个proposal进行变形(固定大小的特征向量)后送入FC层,最后经过两个分支输出分类结果和位置回归结果。

Oriented RPN

  • 输入:backbone的后5层{p2,p3,p4,p5,p6}(用做FPN的五层 FPN可参考FPN讲解)。
  • 输出:一组δ = (δ x ,δ y ,δ w ,δ h ,δ α ,δ β )。

anchor的选择

在每个像素点选择3个不同长宽比的anchors,{1:2,1:1,2:1},因为每层level的feature map的大小不同,所以不需要再设不同scale的anchor。

对输出向量进行解码

在这里插入图片描述
按照这个公式解码输出向量δ = (δ x ,δ y ,δ w ,δ h ,δ α ,δ β ),此时的 (x,y,w,h,∆α,∆β).就表示一个proposal。其中(x,y)表示框的中心点,w,h分别是预测框的外接矩形的宽和长,∆α,∆β是相对于中心点的偏移量,如图所示。下面在midpoint offset represention中介绍一下如何根据(x,y,w,h,∆α,∆β)表达一个oriented object
在这里插入图片描述

Midpoint Offset Representation

根据上文中提到的(x,y,w,h,∆α,∆β),如何确定出一个目标呢?将预测框的四个点设为v1,v2,v3,v4如上图所示。以顺时针方向排列的。计算公式如下
在这里插入图片描述
每一个点的位置都是确定的,这样也消除了顶点排列组合数目多,不容易确定的问题。

Loss Function

每个anchor都设置一个binary label记为p,用来标记是正样本(1)还是负样本(0)。

  • 正样本:(i) IoU>=0.3 && 对某一 GT box有最大的IOU。(ii) 与任意一个GT Box的IOU>=0.7
  • 负样本:IOU<0.3
  • else 不是正样本也不是负样本。
    (注:GT box是oriented bbox的外接矩形框)
    Loss function 定义如下
    在这里插入图片描述
    其中前半部分是分类损失,p和p*分别是实际值和预测值,Fcls是交叉熵损失。后半部分是回归损失,Freg是 Smooth L1 损失。

proposals的选择

在oriented RPN阶段,为了减少proposal的数量,已减小计算量。本文在每个level的特征图上选择了2000个proposals,并进行NMS。

Oriented R-CNN Head

Oriented RPN输出一系列的oriented proposals,这些oriented proposals和feature map {P2,P3,P4,P5}共同作为输入,输到Oriented R-CNN Head中。利用Rotated RoIAligin提取固定大小的特征向量,输入到后面的两个FC中,分别进行分类和回归。

Rotated RoIAlign

在这里插入图片描述
通过proposal可以计算出预测框的四个点v1-v4,然后要想办法将这个框映射到每一level的特征图上。
首先选择短对角线,如上图的v2-v4,将其延长到和长对角线相同的长度,然后得到一个矩形框(红色的),然后将这个框映射到特征图上(上图中的中间部分)。然后再利用SPPnet中的思想,通过不停地池化,将映射在特征图上的红框变成固定大小m*m的特征向量。
这样每个proposal就能得到一个固定大小的特征向量,便于后面送入FC中进行分类和回归。

实验

(略)
在这里插入图片描述

目标检测入门选手,如有不对的地方,欢迎批评指正。

参考:
https://mp.weixin.qq.com/s/5KNKSMIbZ10sqDQYEFNdeg

  • 7
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Oriented R-CNN是一种用于目标检测的算法,它可以检测出图像中的物体,并且可以对物体进行方向的识别和定位。该算法基于R-CNN算法,但是在特征提取和物体定位方面进行了改进,使得算法在处理旋转物体时更加准确和稳定。Oriented R-CNN算法已经在许多实际应用中得到了广泛的应用,例如自动驾驶、智能安防等领域。 ### 回答2: Oriented R-CNN是用于物体检测的一种新型神经网络模型,它是在R-CNN算法的基础之上进行改进的。与传统的R-CNN不同,Oriented R-CNN主要在两个方面进行了改进,分别是在物体的表示和检测上。 首先,Oriented R-CNN将物体的表示改为了方向倾斜的矩形框,也就是所谓的方向倾斜矩形框。这种表示方法主要是为解决传统的矩形框在表达方向不明确时的不足。由于物体的朝向(方向)不同,其在图像上所覆盖的区域大小和形状也会发生变化,而方向倾斜的矩形框能够更准确地表达物体的方向和位置。 其次,Oriented R-CNN在物体检测的时候利用了更加高效和准确的算法。其中最关键的是所采用的RoI Align算法,它与传统的RoI Pooling算法相比,在物体定位的精度和效率方面都有显著的提升。另外,Oriented R-CNN还采用了金字塔式的特征提取方法,使得模型在尺度变化和位置变化方面具有更好的鲁棒性。 总体来说,Oriented R-CNN以其卓越的检测性能和更加准确的物体表示方式备受关注。在实际应用中,它可以被广泛地应用于各种物体检测任务,包括图像分割、目标跟踪、自动驾驶等领域。 ### 回答3: Oriented R-CNN是基于R-CNN框架的目标检测算法,它在R-CNN算法的基础上进行改进,增强了检测器对于旋转物体的检测能力。它是以PyTorch深度学习框架为基础,使用RPN网络获取候选框,再用RoIAlign网络从候选框中提取特征,最后用一个分类器和回归器对提取的特征进行分类和定位。 Oriented R-CNN 控制了边界框的旋转和尺寸,并增加了一个方向预测分支,以对旋转物体进行检测。这种模型可以应用于需要对旋转目标进行检测的场景。 相比于传统的R-CNN网络,Oriented R-CNN的明显优势在于其对于旋转物体的检测能力。由于一些场景中的物体有多种旋转姿势和尺寸,特别是在一些工业场景里,旋转物体的检测非常重要。因此,Oriented R-CNN算法为物体检测提供了一种更加高效和准确的解决方案。 除了以上提到的优势,Oriented R-CNN还具有以下一些优点。首先,它的训练过程非常简单,可以与其他基于R-CNN的模型进行混合训练。这样一来,就可以快速训练出一个强大的检测模型。同时,它还可以与其他分类器和回归器组合,进一步提高检测效果。 总之,Oriented R-CNN是一个集成了旋转物体检测和传统R-CNN框架的目标检测算法,它的优势在于对于旋转目标的检测能力,同时还具有简单、训练快、组合性强等特点。Oriented R-CNN在工业生产和监控等领域具有广泛应用潜力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值