统计学基础(二):三个基本抽样分布

本文是关于统计学基础的学习笔记,探讨了三个基本的抽样分布:χ2分布、t分布和F分布。χ2分布是正态分布变量平方和的分布,具有加性性质;t分布常用于小样本情况下,与χ2分布和正态分布有关;F分布是两个独立χ2分布的比例,广泛应用于方差分析中。
摘要由CSDN通过智能技术生成

此为本人学习笔记,不具备参考价值,禁止任何形式的传播

1.基本概念

总体:研究对象某项指标的全部。
样本:所研究对象若干个体,称为样本。记作 ( x 1 , x 2 , … ) (x_1,x_2,\ldots) (x1,x2,)

如果

  1. x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn相互独立
  2. x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn与总体 x x x分布相同

( x 1 , x 2 , … , x n ) (x_1,x_2,\dots,x_n) (x1,x2,,xn)简单随机样本

统计量:称 ( x 1 , x 2 , … , x n ) (x_1,x_2,\dots,x_n) (x1,x2,,xn)样本的无参函数为统计量。

e g eg eg: x 1 , x 2 , x 3 3 \frac{x_1,x_2,x_3}{3} 3x1,x2,x3 ✓ ✓ \quad x 1 2 + x 2 2 + x 3 2 ✓ x_1^2+x_2^2+x_3^2✓\quad x12+x22+x32 a x 1 + x 2 + x 3 ✗ ax_1+x_2+x_3✗ ax1+x2+x3

重要统计量
1.样本均值
x ˉ = x 1 + x 2 + ⋯ + x n n \bar x=\frac{x_1+x_2+\dots+x_n}{n} xˉ=nx1+x2++xn

2.样本方差
S 2 = 1 n ∑ i − 1 n ( x i 2 − x ˉ ) 2 S^2=\frac{1}{n}\sum_{i-1}^{n}{(x_i^2-\bar x)^2} S2=n1i1n(xi2xˉ)2

3.样本的 k k k阶原点矩
A k = 1 n ∑ i = 1 n x i k ( k = 1 , 2 , 3 , …   ) A_k=\frac{1}{n}\sum_{i=1}^{n}{x_i^k}\quad(k=1,2,3,\dots) Ak=n1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值