此为本人学习笔记,不具备参考价值,禁止任何形式的传播
1.基本概念
总体:研究对象某项指标的全部。
样本:所研究对象若干个体,称为样本。记作 ( x 1 , x 2 , … ) (x_1,x_2,\ldots) (x1,x2,…)
如果
- x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,…,xn相互独立
- x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,…,xn与总体 x x x分布相同
称 ( x 1 , x 2 , … , x n ) (x_1,x_2,\dots,x_n) (x1,x2,…,xn)为简单随机样本。
统计量:称 ( x 1 , x 2 , … , x n ) (x_1,x_2,\dots,x_n) (x1,x2,…,xn)样本的无参函数为统计量。
e g eg eg: x 1 , x 2 , x 3 3 \frac{x_1,x_2,x_3}{3} 3x1,x2,x3 ✓ ✓ ✓ \quad x 1 2 + x 2 2 + x 3 2 ✓ x_1^2+x_2^2+x_3^2✓\quad x12+x22+x32✓ a x 1 + x 2 + x 3 ✗ ax_1+x_2+x_3✗ ax1+x2+x3✗
重要统计量
1.样本均值
x ˉ = x 1 + x 2 + ⋯ + x n n \bar x=\frac{x_1+x_2+\dots+x_n}{n} xˉ=nx1+x2+⋯+xn
2.样本方差
S 2 = 1 n ∑ i − 1 n ( x i 2 − x ˉ ) 2 S^2=\frac{1}{n}\sum_{i-1}^{n}{(x_i^2-\bar x)^2} S2=n1i−1∑n(xi2−xˉ)2
3.样本的 k k k阶原点矩
A k = 1 n ∑ i = 1 n x i k ( k = 1 , 2 , 3 , … ) A_k=\frac{1}{n}\sum_{i=1}^{n}{x_i^k}\quad(k=1,2,3,\dots) Ak=n1</