三大抽样分布:卡方分布、t分布、F分布

1 卡方分布

设随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立,都服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),则随机变量 X 2 = X 1 2 + X 2 2 + ⋯ + X n 2 X^2=X_1^2+X_2^2+\cdots+X_n^2 X2=X12+X22++Xn2服从自由度为 n n n χ 2 \chi^2 χ2分布,记作 X 2 ∼ χ 2 ( n ) X^2\sim \chi^2(n) X2χ2(n)

χ 2 ( n ) \chi^2(n) χ2(n)分布的概率密度函数为
f ( x ) = { 1 2 n 2 Γ ( n 2 ) x n 2 − 1 e − x 2 , x > 0 0 ,        x ≤ 0 f(x)=\begin{cases} \frac{1} {2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2}-1}e^{-\frac{x}{2}}, x>0 \\ \\ 0, \ \ \ \ \ \ x \leq 0 \end{cases} f(x)=22nΓ(2n)1x2n1e2x,x>00,      x0

X 1 2 ∼ χ 1 2 ( n 1 ) X_1^2\sim \chi^2_1(n_1) X12χ12(n1) X 2 2 ∼ χ 2 2 ( n 2 ) X_2^2\sim \chi^2_2(n_2) X22χ22(n2),并且 X 1 2 X_1^2 X12 X 2 2 X_2^2 X22互相独立,则 X 1 2 + X 2 2 ∼ χ 2 ( n 1 + n 2 ) X_1^2+X_2^2\sim \chi^2(n_1+n_2) X12+X22χ2(n1+n2).

如果 X 2 ∼ χ 2 ( n ) X^2\sim \chi^2(n) X2χ2(n),则有 E ( X 2 ) = n E(X^2)=n E(X2)=n D ( X 2 ) = 2 n D(X^2)=2n D(X2)=2n

运行如下代码,绘制自由度从1到20的卡方分布的概率密度函数曲线图,

clear all
clc
close all

%%
x=0:0.1:40;
y = chi2pdf(x,1);
plot(x, y)
xlim([0,40])
ylim([0,0.6])
grid on
hold on
for n = 2:20
    y = chi2pdf(x,n);
    plot(x, y)
end
legend('df=1', 'df=2', 'df=3', 'df=4', 'df=5', 'df=6', 'df=7', 'df=8', 'df=9', 'df=10', ...
'df=11', 'df=12', 'df=13', 'df=14', 'df=15', 'df=16', 'df=17', 'df=18', 'df=19', 'df=20');
title('不同自由度的卡方分布的概率密度函数')
xlabel('自变量X')
ylabel('概率Y')

在这里插入图片描述

2 t分布

设随机变量 X , Y X,Y X,Y相互独立,且 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) Y ∼ χ 2 ( n ) Y\sim \chi^2(n) Yχ2(n),则随机变量 t = X Y / n t=\frac{X}{\sqrt{Y/n}} t=Y/n X服从自由度为 n n n t t t分布,记作 t ∼ t ( n ) t\sim t(n) tt(n)

t ( n ) t(n) t(n)分布的概率密度函数
f ( x ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + x 2 n ) − n + 1 2 ,      − ∞ < x < + ∞ f(x)=\frac{\Gamma(\frac{n+1}{2})} {\sqrt{n \pi} \Gamma(\frac{n}{2}) } \Big(1+ \frac{x^2}{n} \Big)^{-\frac{n+1}{2}}, \ \ \ \ -\infty < x < +\infty f(x)=nπ Γ(2n)Γ(2n+1)(1+nx2)2n+1,    <x<+

t ( n ) t(n) t(n)分布的概率密度函数 f ( x ) f(x) f(x)是偶函数,且有 l i m n → ∞ f ( x ) = 1 2 π e − x 2 2 \underset{n\rightarrow \infty}{lim} f(x) =\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} nlimf(x)=2π 1e2x2,即当 n n n充分大时, t ( n ) t(n) t(n)分布近似 N ( 0 , 1 ) \mathcal{N}(0,1) N(0,1)分布。

运行以下代码,绘制不同自由度的 t t t分布的概率密度函数曲线图,

clear all
clc
close all

%%
x=-5:0.1:5;
y = tpdf(x,1);
plot(x, y)
xlim([-5,5])
ylim([0,0.4])
grid on
hold on
for n = 2:10
    y = tpdf(x,n);
    plot(x, y)
end
legend('df=1', 'df=2', 'df=3', 'df=4', 'df=5', 'df=6', 'df=7', 'df=8', 'df=9', 'df=10');
title('不同自由度的t分布的概率密度函数')
xlabel('自变量X')
ylabel('概率Y')

在这里插入图片描述

3 F分布

设随机变量 X , Y X,Y X,Y互相独立,且 X ∼ χ 2 ( m ) X\sim \chi^2(m) Xχ2(m) Y ∼ χ 2 ( n ) Y\sim \chi^2(n) Yχ2(n),则随机变量 F = X / m Y / n F=\frac{X/m}{Y/n} F=Y/nX/m服从自由度为 ( m , n ) (m,n) (m,n) F \mathcal{F} F分布,记作 F ∼ F ( m , n ) F\sim \mathcal{F}(m,n) FF(m,n),其概率密度函数为
f ( x ) = { Γ ( n + m 2 ) Γ ( m 2 ) Γ ( n 2 ) ( m n ) ( m n x ) m 2 − 1 ( 1 + m n x ) − n + m 2 ,     x ≥ 0 0 ,      x < 0 f(x)=\begin{cases} \frac{ \Gamma(\frac{n+m}{2}) }{ \Gamma(\frac{m}{2}) \Gamma(\frac{n}{2}) } (\frac{m}{n}) (\frac{m}{n}x)^{\frac{m}{2}-1} (1+\frac{m}{n}x)^{-\frac{n+m}{2}}, \ \ \ x\geq 0 \\ \\ 0, \ \ \ \ x < 0 \end{cases} f(x)=Γ(2m)Γ(2n)Γ(2n+m)(nm)(nmx)2m1(1+nmx)2n+m,   x00,    x<0

F ∼ F ( m , n ) F\sim \mathcal{F}(m,n) FF(m,n),则 1 F ∼ F ( n , m ) \frac{1}{F}\sim \mathcal{F}(n,m) F1F(n,m)

运行以下代码,绘制不同自由度的 F F F分布的概率密度函数曲线图,

clear all
clc
close all

%%
x=0:0.1:10;
y1 = fpdf(x, 10, 40);
y2 = fpdf(x, 11, 3);
plot(x, y1, x, y2)
grid on
legend('fd=(10,40)','fd=(11,3)')
title('不同自由度的F分布的概率密度函数')
xlabel('自变量X')
ylabel('概率Y')
xlim([0,10])

在这里插入图片描述

4应用

4.1 一个正态总体

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)的样本,样本均值为 X ˉ \bar{X} Xˉ,样本方差为 S 2 S^2 S2,则有:

(1)
X ˉ ∼ N ( μ , σ 2 n ) \bar{X}\sim \mathcal{N}(\mu,\frac{\sigma^2}{n}) XˉN(μ,nσ2)
U = X ˉ − μ σ / n ∼ N ( 0 , 1 ) U= \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1) U=σ/n XˉμN(0,1)

(2) X ˉ \bar{X} Xˉ S 2 S^2 S2相互独立,且
( n − 1 ) S 2 σ 2 = 1 σ 2 [ ∑ i = 1 n ( X i − X ˉ ) 2 ] ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}=\frac{1}{\sigma^2} \bigg[\sum_{i=1}^n(X_i-\bar{X})^2 \bigg] \sim \chi^2(n-1) σ2(n1)S2=σ21[i=1n(XiXˉ)2]χ2(n1)

(3)
T = X ˉ − μ S / n ∼ t ( n − 1 ) T=\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1) T=S/n Xˉμt(n1)

(4)
χ 2 = 1 σ 2 [ ∑ i = 1 n ( X i − μ ) 2 ] ∼ χ 2 ( n ) \chi^2=\frac{1}{\sigma^2} \bigg[ \sum_{i=1}^n(X_i-\mu)^2 \bigg] \sim \chi^2(n) χ2=σ21[i=1n(Xiμ)2]χ2(n)
S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1) σ12/σ22S12/S22F(n11,n21)

4.2 两个正态总体

X ∼ N ( μ 1 , σ 1 2 ) X\sim \mathcal{N}(\mu_1,\sigma_1^2) XN(μ1,σ12) Y ∼ N ( μ 2 , σ 2 2 ) Y\sim \mathcal{N}(\mu_2,\sigma_2^2) YN(μ2,σ22) X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn分别来自总体 X X X Y Y Y的样本,且两个总体相互独立,则有

(1)
X ˉ − Y ˉ ∼ N ( μ 1 − μ 2 ,    σ 1 2 n 1 + σ 2 2 n 2 ) \bar{X}-\bar{Y} \sim \mathcal{N}\bigg (\mu_1-\mu_2,\ \ \frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2} \bigg) XˉYˉN(μ1μ2,  n1σ12+n2σ22)
U = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) U=\frac{(\bar{X}-\bar{Y}) - (\mu_1 - \mu_2) } { \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} } } \sim \mathcal{N}(0,1) U=n1σ12+n2σ22 (XˉYˉ)(μ1μ2)N(0,1)

(2) 如果 σ 1 2 = σ 2 2 \sigma_1^2=\sigma_2^2 σ12=σ22,则
T = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) S 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) T=\frac{ (\bar{X}-\bar{Y}) - (\mu_1 - \mu_2) }{ S\sqrt{\frac{1}{n_1} + \frac{1}{n_2} } } \sim t(n_1+n_2-2) T=Sn11+n21 (XˉYˉ)(μ1μ2)t(n1+n22)
其中,
S 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 S^2=\frac{(n_1-1) S_1^2 + (n_2 - 1)S_2^2 }{n_1+n_2 - 2} S2=n1+n22(n11)S12+(n21)S22

(3)
F = n 2 σ 2 2 ∑ i = 1 n 1 ( X 1 − μ 1 ) 2 n 1 σ 1 2 ∑ i = 1 n 2 ( Y − μ 2 ) 2 ∼ F ( n 1 , n 2 ) F=\frac{n_2\sigma_2^2\sum_{i=1}^{n_1} (X_1-\mu_1)^2 } { n_1\sigma_1^2 \sum_{i=1}^{n_2} (Y-\mu_2)^2 } \sim \mathcal{F}(n_1, n_2) F=n1σ12i=1n2(Yμ2)2n2σ22i=1n1(X1μ1)2F(n1,n2)

(4)
F = σ 2 2 S 1 2 σ 1 2 S 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F=\frac{\sigma_2^2S_1^2}{\sigma_1^2S_2^2} \sim \mathcal{F}(n_1-1, n_2-1) F=σ12S22σ22S12F(n11,n21)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值