Naive BayesClassifier(朴素贝叶斯)

朴素贝叶斯的学习和分类

模型

输入:
x ∈ R p x\in R^p xRp,p维特征向量

输出
y ∈ { 1 , 2 , ⋯   , K } y\in\{1,2,\cdots,K\} y{1,2,,K},,类别标记

训练数据集
T = { ( x 1 , y 1 ) , ⋯   , ( x n , y n ) } T=\{(x_1,y_1),\cdots,(x_n,y_n)\} T={(x1,y1),,(xn,yn)}

模型假设
( x , y ) (x,y) (x,y) p ( x , y ) p(x,y) p(x,y)产生
条件独立性假设:
P ( X = x ∣ Y = c k ) = ∏ i = 1 p p ( X i = x i ∣ y = c k ) P(X=x|Y=c_k)=\prod_{i=1}^p p(X^i=x^i|y=c_k) P(X=xY=ck)=i=1pp(Xi=xiy=ck)

目标:
学习 p ( x , y ) p(x,y) p(x,y)
之后给定x,求出后验概率最大的y作为分类变量输出

学习:
先验概率: p ( y ) p(y) p(y)
条件概率:
p ( X = x ∣ Y = c k ) = P ( X 1 = x 1 , X 2 = x 2 , ⋯   , X p = x p ∣ Y = c k ) p(X=x|Y=c_k)=P(X^1=x^1,X^2=x^2,\cdots,X^p=x^p|Y=c_k) p(X=xY=ck)=P(X1=x1,X2=x2,,Xp=xpY=ck)

后验概率最大化
P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P\left(Y=c_{k} \mid X=x\right)=\frac{P\left(X=x \mid Y=c_{k}\right) P\left(Y=c_{k}\right)}{\sum_{k} P\left(X=x \mid Y=c_{k}\right) P\left(Y=c_{k}\right)} P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)

分类依据:
y = a r g m a x c k p ( Y = c k ) ∏ i = 1 p p ( X i = x i ∣ y = c k ) y=argmax_{c_k}p(Y=c_k)\prod_{i=1}^p p(X^i=x^i|y=c_k) y=argmaxckp(Y=ck)i=1pp(Xi=xiy=ck)

后验概率最大化==期望风险最小化(选择0-1)损失函数
proof:
0-1损失函数
f ( x ) = a r g m i n y ∑ k = 1 K I ( y ≠ C k ) p ( C k ∣ X = x ) = a r g m i n y 1 − I ( y = C k ) p ( C k ∣ X = x ) = a r g m a x y I ( y = C k ) p ( C k ∣ X = x ) f(x)=argmin_{y}\sum_{k=1}^KI(y\neq C_k)p(C_k|X=x)=argmin_{y} 1-I(y= C_k)p(C_k|X=x)=argmax_{y}I(y= C_k)p(C_k|X=x) f(x)=argminyk=1KI(y=Ck)p(CkX=x)=argminy1I(y=Ck)p(CkX=x)=argmaxyI(y=Ck)p(CkX=x)

参数估计

极大似然估计

先验概率的极大似然估计:
p ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N p(Y=c_k)=\frac{\sum_{i=1}^NI(y_i=c_k)}{N} p(Y=ck)=Ni=1NI(yi=ck)
条件概率的极大似然估计
P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i I ( x i ( j ) = a j l , y i = c k ) ∑ i I ( y i = c k ) P\left(X^{(j)}=a_{j l} \mid Y=c_{k}\right)=\frac{\sum_{i} I\left(x_{i}^{(j)}=a_{j l}, y_{i}=c_{k}\right)}{\sum_{i} I\left(y_{i}=c_{k}\right)} P(X(j)=ajlY=ck)=iI(yi=ck)iI(xi(j)=ajl,yi=ck)

学习和分类的算法

在这里插入图片描述

贝叶斯估计

极大似然估计有可能出现先验概率为0的情况,此时会影响条件概率的估计这是后采取贝叶斯估计
贝叶斯估计等价于随机变量在各个取值的频数上加上 λ \lambda λ,一般 λ = 1 \lambda =1 λ=1
条件概率
P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i I ( y i = c k ) + s j λ P\left(X^{(j)}=a_{j l} \mid Y=c_{k}\right)=\frac{\sum_{i} I\left(x_{i}^{(j)}=a_{j l}, y_{i}=c_{k}\right)+\lambda}{\sum_{i} I\left(y_{i}=c_{k}\right)+s_j\lambda} P(X(j)=ajlY=ck)=iI(yi=ck)+sjλiI(xi(j)=ajl,yi=ck)+λ
s j s_j sj x j x_j xj可以取值的种类数目

先验概率
p ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + k λ p(Y=c_k)=\frac{\sum_{i=1}^NI(y_i=c_k)+\lambda}{N+k\lambda} p(Y=ck)=N+kλi=1NI(yi=ck)+λ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值