Support Vector Machine(支持向量机)

线性可分支持向量机

线性可分问题: 可以在特征空间中找到一个分离的超平面 w T x + b = 0 w^Tx+b=0 wTx+b=0将特征空间划分为正例和负例。通过分类决策函数 f ( x ) = s i g n ( w T x + b ) f(x)=sign(w^Tx+b) f(x)=sign(wTx+b)可以完美划分正负例

函数间隔和几何间隔

函数间隔:
γ ^ i = y i ( w T x i + b ) \hat \gamma_i=y_i(w^Tx_i+b) γ^i=yi(wTxi+b)

超平面关于训练数据集的函数间隔:
γ ^ = m i n i γ ^ i \hat\gamma=min_i \hat \gamma_i γ^=miniγ^i

comment:
如果将 w , b w,b w,b同比例变化,则超平面不变,但是函数间隔会发生变化,因此对 w w w加约束 ∥ w ∥ = 1 \|w\|=1 w=1,此时的函数间隔对应几何间隔

样本点距离:
γ i = y i ( w T ∥ w ∥ x i + b ∥ w ∥ ) \gamma_i=y_i(\frac{w^T}{\|w\|}x_i+\frac{b}{\|w\|}) γi=yi(wwTxi+wb)

超平面关于训练数据集的几何间隔:
γ = m i n i γ i \gamma=min_i \gamma_i γ=miniγi

间隔最大化

对训练数据集找到几何间隔最大的超平面对训练数据集进行分类,要将最难分的正负例分开,几何间隔代表这种分类的确信度
对应优化问题
m a x w , b γ s . t .    y i ( w T ∥ w ∥ x i + b ∥ w ∥ ) ≥ γ , i = 1 , ⋯   , N max _{w,b} \gamma\\ s.t. \ \ y_i(\frac{w^T}{\|w\|}x_i+\frac{b}{\|w\|})\geq\gamma, i=1,\cdots,N maxw,bγs.t.  yi(wwTxi+wb)γ,i=1,,N

也可以用函数间隔将上述问题进行改写
m a x w , b γ ^ ∥ w ∥ s . t .    y i ( w T x i + b ) ≥ γ ^ , i = 1 , ⋯   , N max _{w,b} \frac{\hat\gamma}{\|w\|}\\ s.t. \ \ y_i(w^Tx_i+b)\geq\hat\gamma, i=1,\cdots,N maxw,bwγ^s.t.  yi(wTxi+b)γ^,i=1,,N

函数间隔不影响以上问题的求解,因此固定函数间隔 γ ^ = 1 \hat\gamma=1 γ^=1
m i n w , b 1 2 ∥ w ∥ 2 s . t .    y i ( w T x i + b ) − 1 ≥ 0 , i = 1 , ⋯   , N min_{w,b} \frac{1}{2}\|w\|^2\\ s.t. \ \ y_i(w^Tx_i+b)-1\geq0, i=1,\cdots,N minw,b21w2s.t.  yi(wTxi+b)10,i=1,,N
以上可以得到一个凸二次规划问题

支持向量
w T X + B = 1 & − 1 w^TX+B=1 \&-1 wTX+B=1&1的点

对偶算法

在这里插入图片描述

对偶问题

在这里插入图片描述

原问题与对偶问题的关系

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201220123205259.png#pic_center
在这里插入图片描述

线性支持向量机和软间隔最大化

现实中所有问题不一定都能够完全线性可分
可以引入一个松弛变量 ξ i ≥ 0 \xi_i\geq0 ξi0
约束条件:
y i ( w ⋅ x i + b ) ≥ 1 − ξ i y_i(w·x_i+b)\geq1-\xi_i yi(wxi+b)1ξi
目标函数:
1 2 ∥ w ∥ 2 + C ∑ i ξ i \frac{1}{2}\|w\|^2+C\sum_i \xi_i 21w2+Ciξi
软间隔最大化问题:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

合页损失函数(hinge loss function)

线性支持向量机等价于最小化以下目标函数
∑ i [ 1 − y i ( w ⋅ x i + b ) + ] + λ ∥ w ∥ 2 \sum_i [1-y_i(w·x_i+b)_+]+\lambda \|w\|^2 i[1yi(wxi+b)+]+λw2
其中 [ x ] + = m a x ( x , 0 ) [x]_+=max(x,0) [x]+=max(x,0)
合页损失函数是0-1损失函数的上届,这里合页损失函数只有确信度足够高才是0
在这里插入图片描述

非线性支持向量机和核函数

非线性分类问题

如果能用 R n R^n Rn空间内的一个超曲面将正负例分开,那么称这个问题为非线性可分问题
基本想法:
通过一个非线性变换,将输入空间对应以个特征空间,使输入空间中的超曲面模型对应于特征空间中的超平面模型

核函数定义

如果存在一个从 X → H X\rightarrow H XH的映射:
ϕ ( x ) : X → H \phi(x):X\rightarrow H ϕ(x):XH
使得对于所有的 x , z ∈ X x,z\in X x,zX,函数 K ( x , z ) K(x,z) K(x,z)满足条件
K ( X , Z ) = ϕ ( x ) ⋅ ϕ ( z ) K(X,Z)=\phi(x)·\phi(z) K(X,Z)=ϕ(x)ϕ(z)
则称 K ( x , z ) K(x,z) K(x,z)为核函数, ϕ ( x ) ⋅ ϕ ( z ) \phi(x)·\phi(z) ϕ(x)ϕ(z) ϕ ( x ) \phi(x) ϕ(x) ϕ ( z ) \phi(z) ϕ(z)的内积
注:
(1)特征空间一般是高维的,甚至是无穷维的
(2)以上映射函数不是唯一的

核技巧在支持向量机中的应用

在对偶问题的目标函数,内积 x i ⋅ x j x_i·x_j xixj可以用核函数来代替 K ( x i , x j ) K(x_i,x_j) K(xi,xj)代替,此时对偶问题的目标函数为
W ( α ) = 1 2 ∑ i N ∑ j N α i α j y i y j k ( x i , x j ) − ∑ i N α i W(\alpha)=\frac{1}{2}\sum_i^N\sum_j^N\alpha_i\alpha_jy_iy_jk(x_i,x_j)-\sum_i^N\alpha_i W(α)=21iNjNαiαjyiyjk(xi,xj)iNαi

同时分类决策函数的内积也用核函数代替
f ( x ) = sign ⁡ ( ∑ i α i ∗ y i ϕ ( x i ) ⋅ ϕ ( x ) + b ∗ ) = sign ⁡ ( ∑ i α i ∗ y i K ( x i , x ) + b ∗ ) f(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i}^{*} y_{i} \phi\left(x_{i}\right) \cdot \phi(x)+b^{*}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i}^{*} y_{i} K\left(x_{i}, x\right)+b^{*}\right) f(x)=sign(iαiyiϕ(xi)ϕ(x)+b)=sign(iαiyiK(xi,x)+b)
因此不需要显式的定义特征空间和映射函数

正定核

正定核充要条件

定理1
(正定核的充要条件)设 K : x × x → R K:x\times x \rightarrow R Kx×xR为对称函数, K ( X ⋅ Z ) K(X·Z) K(XZ)为正定核函数的充要条件是对于任意的 x i ∈ X ( i = 1 , ⋯   , m ) , K ( x , z ) x_i \in X(i=1,\cdots ,m),K(x,z) xiX(i=1,,m),K(x,z)对应的Gram矩阵: K = [ K ( x i , x j ) ] m × m K=[K(x_i,x_j)]_{m\times m} K=[K(xi,xj)]m×m是半正定矩阵

常用核函数

多项式核函数
k ( x ⋅ z ) = ( x ⋅ z + 1 ) p k(x·z)=(x·z+1)^p k(xz)=(xz+1)p

高斯核函数
k ( x ⋅ z ) = e x p ( − ∥ x − z ∥ 2 2 σ 2 ) k(x·z)=exp(-\frac{\|x-z\|^2}{2\sigma^2}) k(xz)=exp(2σ2xz2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值