【高等数学基础进阶】定积分与反常积分-反常积分

本文深入探讨了高等数学中的反常积分,包括无穷区间和无界函数情况下的反常积分收敛性。通过常考题型和典型例题解析,阐述了如何判断反常积分的敛散性和进行计算,如利用积分极限和特殊函数进行转化。例如,分析了∫2+∞xde−x、∫1+∞f(x)dx、∫−∞0x21ex1dx和∫1+∞ex+e2−xdx等积分问题的解法。
摘要由CSDN通过智能技术生成

积分有两个要求,一个是积分上下限有限,被积函数有界,打破其中任意一个,即为反常积分

无穷区间上的反常积分

∫ + ∞ a f ( x ) d x = lim ⁡ t → + ∞ ∫ a t f ( x ) d x ∫ − ∞ b f ( x ) d x = lim ⁡ t → − ∞ ∫ t b f ( x ) d x 若 ∫ 0 + ∞ f ( x ) d x 和 ∫ − ∞ 0 f ( x ) 都收敛 , 则称 ∫ − ∞ + ∞ f ( x ) d x 收敛 \begin{gathered} \int^{a}_{+\infty}f(x)dx=\lim\limits_{t\to+\infty}\int^{t}_{a}f(x)dx\\ \int^{b}_{-\infty}f(x)dx=\lim\limits_{t\to-\infty}\int^{b}_{t}f(x)dx\\ 若\int^{+\infty}_{0}f(x)dx和\int^{0}_{-\infty}f(x)都收敛,则称\int^{+\infty}_{-\infty}f(x)dx收敛 \end{gathered} +af(x)dx=t+limatf(x)dxbf(x)dx=tlimtbf(x)dx0+f(x)dx0f(x)都收敛,则称+f(x)dx收敛

常用结论:
∫ a + ∞ 1 x P d x = { P > 1 收敛 P ≤ 1 发散 ( a > 0 ) \int^{+\infty}_{a} \frac{1}{x^{P}}dx=\left\{\begin{aligned}&P>1&收敛\\ &P\leq1&发散\end{aligned}\right.\quad(a>0) a+xP1dx={ P>1P1收敛发散(a>0)

无界函数的反常积分

a a a f ( x ) f(x) f(x)的无界点,
∫ a b f ( x ) d x = lim ⁡ t → a + ∫ c b f ( x ) d x \int^{b}_{a}f(x)dx=\lim\limits_{t\to a^{+}}\int^{b}_{c}f(x)dx abf(x)dx=ta+limcbf(x)dx

常用结论:
∫ a b 1 ( x − a ) P d x = { P < 1 收敛 P ≥ 1 发散 = ∫ a b 1 ( b − x ) P d x \int^{b}_{a} \frac{1}{(x-a)^{P}}dx=\left\{\begin{aligned}&P<1&收敛\\ &P\geq1&发散\end{aligned}\right.=\int^{b}_{a} \frac{1}{(b-x)^{P}}dx ab(xa)P1dx={ P<1P1收敛发散=ab(bx)P1dx

常考题型与典型例题

反常积分的敛散性

例1:说明反常积分 ∫ 2 + ∞ x d e − x \int^{+\infty}_{2}xde^{-x} 2+xdex收敛

∫ 2 + ∞ x d e − x = − ∫ 2 + ∞ x d e − x = − x e − x ∣ 2 + ∞ + ∫ 2 + ∞ e − x d x = − ( x + 1 ) e − x ∣ 2 + ∞ \begin{aligned} \int^{+\infty}_{2}xde^{-x}&=-\int^{+\infty}_{2}xde^{-x}\\ &=-xe^{-x}\Big|^{+\infty}_{2}+\int^{+\infty}_{2}e^{-x}dx\\ &=-(x+1)e^{-x}\Big|^{+\infty}_{2} \end{aligned}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值