pandas的reindex的用法

本文详细介绍了pandas的reindex方法,包括如何处理缺失值、对列进行reindex以及Series的reindex应用。同时,还探讨了DataFrame的set_index用于设置行标签,reset_index用于恢复默认索引,以及reindex_like用于匹配其他对象索引的操作,并通过实例展示了各种用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.**reindex()**表示重新索引,如果某个索引值当前不存在,就会引入
缺失值;可以通过fill_value参数填充默认值,也可以通过method参数设置填充方法;
reindex方法的methon参数的选项:
ffill或pad 前向填充值
bfill或backfill 后向填充值
或者是fill_value直接指定缺失值为多少
例子:

import  pandas as pd
import numpy as np
data=pd.DataFrame(np.random.randn(4,3),columns=['a','b','c'],index=['a','b','c','d'])
data

结果:

a	b	c
a	1.138053	2.017905	-1.007555
b	0.491705	-0.689641	0.955129
c	0.148272	1.493732	-0.211838
d	-0.619931	1.650868	1.794933

用reindex方法重新索引

data.reindex(['b','c','d','e','a'])

结果

	a	b	c
b	0.491705	-0.689641	0.955129
c	0.148272	1.493732	-0.211838
d	-0.619931	1.650868	1.794933
e	NaN             NaN	        NaN
a	1.138053	2.017905	-1.007555
pandas中,reindex方法用于重新索引一个Series或DataFrame对象。如果在reindex方法中只传入一个序列,那么默认会改变索引。例如,对于一个DataFrame对象df,可以使用df.reindex(\['a', 'b', 'c', 'd'\])来重新索引,结果会根据传入的序列重新组织数据,并填充缺失的位置为NaN。\[1\] 另外,reindex方法还可以用于重置行、列索引标签。例如,可以使用df.reindex(index=\[0,2,5\], columns=\['A', 'C', 'B'\])来重新索引DataFrame对象df的行和列,结果会根据给定的新索引重新组织数据,并填充缺失的位置为NaN。\[2\] 对于一个Series对象,reindex方法会创建一个新对象,并根据给定的新索引重新组织数据。如果新索引中有原来索引不存在的标签,那么这些标签对应位置会被填充为NaN。例如,对于一个Series对象s1,可以使用s2 = s1.reindex(\['a', 'b', 'c', 'd', 'e'\])来重新索引,结果会根据给定的新索引重新组织数据,并填充缺失的位置为NaN。\[3\] #### 引用[.reference_title] - *1* *3* [pandas reindex 方法](https://blog.csdn.net/myDarling_/article/details/128024740)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Pandas reindex重置索引](https://blog.csdn.net/ccc369639963/article/details/124246373)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值