断点回归(Regression Discontinuity Design, RDD)是一种准实验设计方法,用于评估政策或其他干预措施的效果。这种方法利用了一个清晰的阈值或“断点”,在这个阈值上,处理状态(例如是否接受某种干预)会突然改变。通过比较断点两侧单位的差异,可以估计出干预效果。
一个生活中的例子是关于学生的奖学金分配。假设一所大学设立了一项奖学金,只有那些平均成绩达到80分以上的学生才有资格获得。这里,80分就是断点。在80分之上的学生和80分之下的学生在其他方面可能非常相似,但由于这个政策,他们的一个关键区别就是前者获得了奖学金而后者没有。
- 有一个突变过程,想象一下分段跳跃函数
反事实:
如果你不读博,你现在在干嘛?可惜你已经读博了,回不去了。所以反事实很难构建。
取平均后的效应( S 1 − S 0 S_1-S_0 S1−S0)是被高估的。
原因:
-
1.高分可能人更聪明,可能获得更好的发展空间
-
2.高分人的家庭条件更好,实习的机会更多,家庭的社会资源更广
-
3.。。。。就是原因可能并不完全来自【政策、处理】的效应。
那么该如何估计呢? -
1.设计一个小窗
-
2.在小窗内建立一个模型,但限制在小窗范围内
-
3.用前一个断点代替反事实
-
4.两者相减,得到处