Data envelopment analysis--super-efficiency models
模型
一般在实际中,我们拿到一组数据,直接进行DEA计算,很容易发生一种情况,就是有大量的决策单元(DMUs)最终效率分数为零。那么接下来就是对这些效率分数为1的值进行考虑,哪一个更好,对其进行一个排序。
与往常模型类似,其实也就是把这个被评估的决策单元不放进生可能集中去,继而建立模型。
CCR下的模型
要注意的是,这里的目标函数,是要在第一阶段求得theta的值,然后在第二阶段中这个theta作为已知条件代入,然后再求所有松弛的和最大。
SBM下的模型
将新的x和y代入模型中,得到新的模型为:
注意
超效率模型存在缺点,就是在VRS(variable returns to scale)情况时可能会存在无可行解的情况。
python处理超效率模型
例子:数据如下,用super radial-I-C模型进行求解:
代码主要部分:
def __CCR_super(self):
for k in self.DMUs:
MODEL = gurobipy.Model(