数据包络分析-超效率模型

Data envelopment analysis--super-efficiency models

模型

一般在实际中,我们拿到一组数据,直接进行DEA计算,很容易发生一种情况,就是有大量的决策单元(DMUs)最终效率分数为零。那么接下来就是对这些效率分数为1的值进行考虑,哪一个更好,对其进行一个排序。

与往常模型类似,其实也就是把这个被评估的决策单元不放进生可能集中去,继而建立模型。

CCR下的模型

在这里插入图片描述

要注意的是,这里的目标函数,是要在第一阶段求得theta的值,然后在第二阶段中这个theta作为已知条件代入,然后再求所有松弛的和最大。

SBM下的模型

在这里插入图片描述
在这里插入图片描述
将新的x和y代入模型中,得到新的模型为:
在这里插入图片描述

注意

超效率模型存在缺点,就是在VRS(variable returns to scale)情况时可能会存在无可行解的情况。

python处理超效率模型

例子:数据如下,用super radial-I-C模型进行求解:
在这里插入图片描述

代码主要部分:

    def __CCR_super(self):
        for k in self.DMUs:
            MODEL = gurobipy.Model(
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值