泛化(generalization) 是机器学习中的一个核心概念,指的是模型在训练数据之外的新数据上表现得如何。换句话说,泛化能力衡量的是模型能否在未见过的样本上做出正确的预测或推断。
1. 泛化的背景
当我们训练机器学习模型时,模型会基于训练数据中的模式进行学习。然而,训练数据只是现实世界的一个有限子集。为了让模型在真实场景中表现良好,它需要具备从有限的训练数据中学到的知识有效地应用到新的、未见过的数据上的能力,这就是泛化。
2. 过拟合与欠拟合
在理解泛化时,两个常见的概念是过拟合和欠拟合,它们都与模型的泛化能力紧密相关。
a. 过拟合(Overfitting):
当模型在训练数据上表现得非常好,甚至可以完全记