泊松分布(Poisson Distribution) 是统计学和概率论中的一种离散概率分布,通常用于描述在固定时间或空间内,某个事件发生的次数。该分布适用于稀有事件的建模,特别是当事件发生是独立的、随机的,且发生的平均速率是恒定的。
1. 泊松分布的定义
泊松分布用于描述某个事件在特定时间段、区域或空间内发生的次数,假设这些事件是独立发生的,且在某个单位时间或单位空间内的平均发生率(即事件的期望发生次数)为 λ \lambda λ。
a. 泊松分布的概率质量函数(PMF)
泊松分布的概率质量函数描述了在某一段时间或某一区域内,发生 k k k 次事件的概率为:
P ( X = k ) = λ k e − λ k ! P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} P(X=k)=k!λke−λ
- X X X:表示事件发生的次数。
- λ \lambda λ:表示在单位时间或单位空间内,事件发生的平均次数(也称为事件的速率或强度)。
- k k k:是事件发生的具体次数,可以是 0 , 1 , 2 , … 0, 1, 2, \dots 0,1,2,… 等非负整数。
- e e e:是自然对数的底,约等于 2.71828。
泊松分布的关键参数是 λ \lambda λ ,它决定了事件发生的平均频率。如果 λ \lambda λ 较大,则事件在单位时间内发生的次数更多,分布趋向于更加集中。如果