【AI知识点】内部协变量偏移(Internal Covariate Shift)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


内部协变量偏移(Internal Covariate Shift) 是深度学习中的一个概念,它描述了在神经网络训练过程中,每一层的输入分布随着训练过程的变化而变化的现象。这种现象会增加训练的难度,导致网络收敛变慢,甚至可能影响模型的最终性能。


1. 什么是协变量和协变量偏移?

在理解内部协变量偏移之前,先理解协变量协变量偏移的概念。

协变量(Covariate)

在机器学习中,协变量是指用于预测或解释目标变量( y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值