【pytorch yolov5 模型优化和超参数自动调整】

本文介绍了在PyTorch中使用YOLOv5进行目标检测时的优化技巧,包括根据Ultralytics官方文档进行的优化建议和超参数调优的详细步骤。特别是通过在`detect.py`中使用`evolve`选项启动遗传算法,从最佳优化结果的前10个epoch中寻找更优参数,进行300次迭代,这些数值可按需设定。
摘要由CSDN通过智能技术生成

1 . 参数调整前可以做的优化(link:https://docs.ultralytics.com/tutorials/training-tips-best-results/ ):

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2,超参数调优(详细步骤link:https://github.com/ultralytics/yolov5/issues/607

总结:其实在cmd命令行执行一个detect.py 中的evolue开启
eg(我自己的):

解释:它会在你best.opt中的最后一次的epoch到其前10次执行遗传算法找最好的一组参数,执行300次 这两个数字都是你自己设置的。

其中evolue后的文件保存在:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值