PyTorch常用函数(1)

1.torch.set_default_tensor_type(t)

  • 这个方法的意思是设置PyTorch中默认的浮点类型,注意这个方法只可以设置浮点数的默认类型,不可以设置整形的默认类型),可以使用torch.get_default_dtype()来获取设置的默认浮点类型。
  • 在CPU上,t默认是torch.FloatTensor,还可以是torch.DoubleTensor
  • 在GPU上,t默认是torch.cuda.FloatTensor,还可以是torch.cuda.DoubleTensor,torch.cuda.HalfTensor
import torch
a = torch.rand(4,3)
print(a.dtype, a.device)
print(torch.get_default_dtype())
# torch.float32 cpu
# torch.float32

torch.set_default_tensor_type(torch.cuda.FloatTensor)
b = torch.rand(2,3)
print(b.dtype, b.device)
print(torch.get_default_dtype())
# torch.float32 cuda:0
# torch.float32

torch.set_default_tensor_type(torch.FloatTensor)
c = torch.rand(3,3)
print(c.dtype, c.device)
print(torch.get_default_dtype())
# torch.float32 cpu
# torch.float32

2.torch.is_nonzero(input)

  • input只能有一个元素,其实就是测试input是不是torch.tensor([0.]),torch.tensor[0],torch.tensor([False])中的一种。
import torch
a = torch.tensor([0])
b = torch.tensor([0.])
c = torch.tensor([False])
d = torch.tensor([True])
print(torch.is_nonzero(a))  # False
print(torch.is_nonzero(b))  # False
print(torch.is_nonzero(c))  # False
print(torch.is_nonzero(d))  # True
# 如果以下操作,则会报错
e = torch.tensor([1,2])
print(torch.is_nonzero(e))
# RuntimeError: Boolean value of Tensor with more than one value is ambiguous

3.torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False)

torch.tensor()会复制数据,如果现在有一个tensor数据a,并且不想要进行复制,那么我们使用a.detach()
如果data类型是Numpy并且不想进行拷贝,那么使用torch.as_tensor()

import torch
a = torch.tensor([2,3,4])
b = torch.Tensor.detach(a)
c = a.detach()
b[0] = 110
print(a, b, c)
# tensor([110,   3,   4]) tensor([110,   3,   4]) tensor([110,   3,   4])
c[0] = 120
print(a, b, c)
# tensor([120,   3,   4]) tensor([120,   3,   4]) tensor([120,   3,   4])

4.torch.as_tensor(data, dtype=None, device=None)->Tensor

list, tuple, NumPy ndarray, scalar,tensor等类型的数据转化为tensor
如果data是一个相应dtype的ndarray,并且设备是cpu(numpy中的ndarray只能存在于cpu中),那么不会进行任何复制,但是返回的是tensor,只是使用的内存相同。

import torch
import numpy as np
a = np.array([1, 2, 3, 4])
t = torch.as_tensor(a)
print(t) # tensor([1, 2, 3, 4])
t[0] = 110
print(a, t) # [110   2   3   4] tensor([110,   2,   3,   4])
print(t.requires_grad)  # False

如果修改dtype则会复制数据:

import torch
import numpy as np
a = np.array([1, 2, 3, 4])
t = torch.as_tensor(a, dtype=torch.float32)
print(t) # tensor([1., 2., 3., 4.])
t[0] = 110
print(a, t) # [1 2 3 4] tensor([110.,   2.,   3.,   4.])
print(t.requires_grad)  # False

5.torch.from_numpy(ndarray)

将类型为numpy.float64, numpy.float32, numpy.float16, numpy.complex64, numpy.complex128, numpy.int64, numpy.int32, numpy.int16, numpy.int8, numpy.uint8, and numpy.bool的numpy.ndarray数据转化为tensor,共享内存。

import torch
import numpy as np
a = np.array([1, 11, 111])
t = torch.from_numpy(a)
print(t)  # tensor([  1,  11, 111])
t[0] = 120
print(a, t)  # [120  11 111] tensor([120,  11, 111])

6.torch.quantize_per_tensor(input, scale, zero_point, dtype) → Tensor和torch.quantize_per_channel(input, scales, zero_points, axis, dtype) → Tensor

在这里插入图片描述
将tensor进行量化,有以下几种方法:
在这里插入图片描述

  • torch.quantize_per_tensor()是按照tensor来进行转化的,每个tensor中所有数据进行一样的操作
  • torch.quantize_per_channel()是对每个channel进行不同的变化。
import torch
print(torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8))
# tensor([-1.,  0.,  1.,  2.], size=(4,), dtype=torch.quint8,quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10)
# 存放表示距离中心点的距离(截取最大最小,中间的保留),注意还要缩放。
print(torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr())
# tensor([ 0, 10, 20, 30], dtype=torch.uint8)

x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
print(torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8))
# tensor([[-1.,  0.], [ 1.,  2.]], size=(2, 2), dtype=torch.quint8, quantization_scheme=torch.per_channel_affine,
# scale=tensor([0.1000, 0.0100], dtype=torch.float64),zero_point=tensor([10,  0]), axis=0)
print(torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr())
# tensor([[  0,  10], [100, 200]], dtype=torch.uint8)

7.torch.dequantize(tensor) → Tensor

通过将量化的张量去量化,返回一个fp32张量

import torch
a = torch.tensor([10., 40., 20.])  # [-1 24.5],其他会截断->[0, 255]
b = torch.quantize_per_tensor(a, 0.1, 10, dtype=torch.quint8)
c = torch.dequantize(b)
print(b, c)
# tensor([10.0000, 24.5000, 20.0000], size=(3,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) 
# tensor([10.0000, 24.5000, 20.0000])
# a中的40.之所以会变成b中的24.5,因为8位无符号数范围为0~255,最大位255(即b.int_repr()中最大的值为255,
# 距离中心点(10)最大的距离只能是245,然后还要乘以0.1,所以就是24.5。同理,8位无符号数最小值为0,所以距离中心点(10)最小的距离只能是-10,然后还要乘以0.1,所以就是-1。

a = torch.tensor([1., 4., 2.])
b = torch.quantize_per_tensor(a, 0.1, 10, dtype=torch.quint8)
c = torch.dequantize(b)
print(b, c)
# tensor([1., 4., 2.], size=(3,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) 
# tensor([1., 4., 2.])

8.torch.polar(abs, angle, *, out=None) → Tensor

创建复数张量
在这里插入图片描述

import numpy as np
import torch
abs = torch.tensor([1, 2], dtype=torch.float64)
angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64)
z = torch.polar(abs, angle)
print(z)
# tensor([ 6.1232e-17+1.0000j, -1.4142e+00-1.4142j], dtype=torch.complex128)
# abs与angle的数据类型要相同,为float或double。如果输入为torch.float32,则输出out必须为torch.complex64。如果输入为torch.float64,则必须为torch.complex128。

9.torch.cat(inputs, dimension=0) → Tensor

在给定维度dimension上对输入的张量进行连接操作
参数:

  • inputs(sequence of Tensors):可以是任意相同Tensor类型的Python序列
  • dimension(int,optional):沿着此维度连接张量序列
import torch
x = torch.randn(2,3)
print(x.shape)  # # torch.Size([2, 3])
print(torch.cat((x,x,x), 0).shape)  # torch.Size([6, 3])
print(torch.cat((x,x,x), 1).shape)  # torch.Size([2, 9])

10.torch.chunk(tensor, chunks, dim=0)

在给定维度(轴)dim上将输入张量进行分块。
参数:

  • tensor (Tensor) – 待分块的输入张量
  • chunks (int) – 分块的个数
  • dim (int) – 沿着此维度进行分块
import torch
x = torch.randn(4,3)
print(x.shape)  # torch.Size([4, 3])
print(torch.chunk(x, 3, 0))
#(tensor([[-0.4134,  0.0175,  0.3921],[ 0.4035, -0.6176,  1.3026]]), 
# tensor([[-0.1641,  0.1590, -1.4298],[-2.4546, -0.4464, -0.1099]]))
print(torch.chunk(x, 3, 1))
# (tensor([[-0.4134],[ 0.4035],[-0.1641],[-2.4546]]), 
# tensor([[ 0.0175],[-0.6176],[ 0.1590],[-0.4464]]), 
# tensor([[ 0.3921],[ 1.3026],[-1.4298],[-0.1099]]))


import torch
x = torch.randn(6,9)
print(x.shape) # torch.Size([6, 9])
print(torch.chunk(x, 3, 0))
# (tensor([[-0.8840,  0.0236, -1.4453,  0.0862,  0.6388, -0.0901,  0.8369, -0.0078,0.4427],
#         [-0.4893, -0.1796, -0.8844, -0.5101, -0.1262,  0.8419, -0.5799,  0.6986,0.2171]]), 
# tensor([[-1.1454,  1.1796, -0.4989,  1.6639, -0.6961, -0.7190, -0.2515, -0.4151,0.5898],
#         [ 0.1325,  2.0381, -1.3824, -0.3890, -1.5002,  0.9571,  2.1166,  1.4195,0.5397]]), 
# tensor([[ 0.0143, -0.2321, -0.0826,  0.2963, -0.4779,  0.0304, -1.4891,  1.7376,0.0992],
#         [ 0.0651,  0.6782, -1.1981, -0.3734,  0.2600,  0.2868,  1.2318,  2.2550,1.8552]]))
print(torch.chunk(x, 3, 1))
# (tensor([[-0.8840,  0.0236, -1.4453],
#         [-0.4893, -0.1796, -0.8844],
#         [-1.1454,  1.1796, -0.4989],
#         [ 0.1325,  2.0381, -1.3824],
#         [ 0.0143, -0.2321, -0.0826],
#         [ 0.0651,  0.6782, -1.1981]]), 
#  tensor([[ 0.0862,  0.6388, -0.0901],
#         [-0.5101, -0.1262,  0.8419],
#         [ 1.6639, -0.6961, -0.7190],
#         [-0.3890, -1.5002,  0.9571],
#         [ 0.2963, -0.4779,  0.0304],
#         [-0.3734,  0.2600,  0.2868]]), 
#  tensor([[ 0.8369, -0.0078,  0.4427],
#         [-0.5799,  0.6986,  0.2171],
#         [-0.2515, -0.4151,  0.5898],
#         [ 2.1166,  1.4195,  0.5397],
#         [-1.4891,  1.7376,  0.0992],
#         [ 1.2318,  2.2550,  1.8552]]))

11.torch.gather(input, dim, index, out=None) → Tensor

沿给定轴 dim,将输入索引张量 index 指定位置的值进行聚合。

  • input (Tensor) – 源张量
  • dim (int) – 索引的轴
  • index (LongTensor) – 聚合元素的下标
  • out (Tensor, optional) – 目标张量
# 对一个 2 维张量,输出可以定义为:
out[i][j] = tensor[index[i][j]][j]  # dim=0
out[i][j] = tensor[i][index[i][j]]  # dim=1
# 对一个 3 维张量,输出可以定义为:
out[i][j][k] = tensor[index[i][j][k]][j][k]  # dim=0
out[i][j][k] = tensor[i][index[i][j][k]][k]  # dim=1
out[i][j][k] = tensor[i][j][index[i][j][k]]  # dim=3
import torch
# 一维情况
a = torch.rand(6)
index = torch.tensor([0])
b = torch.gather(a, 0, index)
print(a)
print(b)
# tensor([0.1230, 0.4418, 0.9687, 0.5235, 0.6526, 0.5118])
# tensor([0.1230])
# 二维情况
a = torch.rand(3, 3)
index = torch.tensor([[0, 1, 2], [1, 2, 0], [2, 0, 1]])
b = torch.gather(a, 0, index)
print(a)
print(b)
# tensor([[0.7992, 0.3199, 0.1959],
#         [0.2398, 0.2135, 0.9711],
#         [0.6006, 0.9658, 0.4815]])
# tensor([[0.7992, 0.2135, 0.4815],
#         [0.2398, 0.9658, 0.1959],
#         [0.6006, 0.3199, 0.9711]])
# 三维情况
a = torch.rand(3,3,3)
index=torch.tensor([[[0,1,2],[1,2,0], [2,0,1]], [[0,1,2],[1,2,0], [2,0,1]], [[0,1,2],[1,2,0], [2,0,1]]])
b = torch.gather(a, 1, index)
print(a)
print(b)
# tensor([[[0.9200, 0.6297, 0.8914],
#          [0.1114, 0.3913, 0.6592],
#          [0.9143, 0.5122, 0.9108]],

#         [[0.3028, 0.1813, 0.5715],
#          [0.1008, 0.1466, 0.1975],
#          [0.8455, 0.8054, 0.3646]],

#         [[0.7624, 0.2610, 0.0521],
#          [0.8029, 0.9804, 0.1773],
#          [0.3598, 0.2220, 0.4475]]])
# tensor([[[0.9200, 0.3913, 0.9108],
#          [0.1114, 0.5122, 0.8914],
#          [0.9143, 0.6297, 0.6592]],

#         [[0.3028, 0.1466, 0.3646],
#          [0.1008, 0.8054, 0.5715],
#          [0.8455, 0.1813, 0.1975]],

#         [[0.7624, 0.9804, 0.4475],
#          [0.8029, 0.2220, 0.0521],
#          [0.3598, 0.2610, 0.1773]]])

12.torch.index_select(input, dim, index, out=None) → Tensor

沿着指定维度对输入进行切片,取 index 中指定的相应项(index 为一个 LongTensor),然后返
回到一个新的张量, 返回的张量与原始张量有相同的维度(在指定轴上)。
注意: 返回的张量不与原始张量共享内存空间。
参数:

  • input (Tensor) – 输入张量
  • dim (int) – 索引的轴
  • index (LongTensor) – 包含索引下标的一维张量
  • out (Tensor, optional) – 目标张量
import torch
x = torch.randn(3, 4)
print(x)
# tensor([[ 0.2900, -0.9910, -0.4476,  0.5361],
#         [ 1.4227, -0.1876, -2.3000,  0.2488],
#         [-0.3566, -0.4786,  0.1726,  0.4721]])
indices = torch.LongTensor([0, 2])
print(torch.index_select(x, 0, indices))
# tensor([[ 0.2900, -0.9910, -0.4476,  0.5361],
#         [-0.3566, -0.4786,  0.1726,  0.4721]])
print(torch.index_select(x, 1, indices))
# tensor([[ 0.2900, -0.4476],
#         [ 1.4227, -2.3000],
#         [-0.3566,  0.1726]])

13.torch.masked_select(input, mask, out=None) → Tensor

根据掩码张量 mask 中的二元值,取输入张量中的指定项( mask 为一个 ByteTensor),将取
值返回到一个新的 1D 张量,张量 mask 须跟 input 张量有相同数量的元素数目,但形状或维度不需要相同。 注意:返回的张量不与原始张量共享内存空间。
参数:

  • input (Tensor) – 输入张量
  • mask (ByteTensor) – 掩码张量,包含了二元索引值
  • out (Tensor, optional) – 目标张量
    把input与mask相对应起来,取出mask中True所对应位置的数据,组成一维的tensor。
import torch
x = torch.randn(3, 4)
print(x)
# tensor([[ 0.3552, -2.3825, -0.8297,  0.3477],
#         [-1.2035,  1.2252,  0.5002,  0.6248],
#         [ 0.1307, -2.0608,  0.1244,  2.0139]])
mask = x.ge(0.5)
print(mask)
# tensor([[False, False, False, False],
#         [False, True, True, True],
#         [False, False, False, True]])
print(torch.masked_select(x, mask))
# tensor([ 1.2252,  0.5002,  0.6248,  2.0139])

14.torch.dstack(tensors, *, out=None) → Tensor

将tensor沿第三维度按顺序进行叠加
参数:

  • tensors:要叠加的tensor,可以是多个,但是叠加的tensor前两个维度形状需要相等。
  • out:所得结果tensor。
    如果要拼接的tensor维度小于三维,那么我们的结果是先使用torch.atleast_3d()将一维或者二维的tensor转化为3维后再进行拼接。
import torch
# 二维
a = torch.rand(3, 4)
b = torch.rand(3, 4)
c = torch.dstack((a, b))
print(a.shape)
print(b.shape)
print(c.shape)
# torch.Size([3, 4])
# torch.Size([3, 4])
# torch.Size([3, 4, 2])
# 三维
a = torch.rand(3, 4, 2)
b = torch.rand(3, 4, 3)
c = torch.dstack((a, b))
print(a.shape)
print(b.shape)
print(c.shape)
# torch.Size([3, 4, 2])
# torch.Size([3, 4, 3])
# torch.Size([3, 4, 5])
# 四维
a = torch.rand(3, 4, 2, 2)
b = torch.rand(3, 4, 3, 2)
c = torch.dstack((a, b))
print(a.shape)
print(b.shape)
print(c.shape)
# torch.Size([3, 4, 2, 2])
# torch.Size([3, 4, 3, 2])
# torch.Size([3, 4, 5, 2])

15.torch.hstack(tensors, *, out=None) → Tensor

参数:

  • tensors:要拼接的tensor序列。
  • out:输出tensor。
    此方法对一维的tensor沿着第一维进行拼接,而对其它维度的tensor沿着第二维进行拼接。
import torch
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
c = torch.hstack((a,b))
print(c.shape)
# torch.Size([6])
a = torch.tensor([[1],[2],[3]])
b = torch.tensor([[4],[5],[6]])
c = torch.hstack((a,b))
print(a.shape, b.shape, c.shape)
# torch.Size([3, 1]) torch.Size([3, 1]) torch.Size([3, 2])

16.torch.stack(tensors, dim=0, *, out=None) → Tensor

将一系列的tensor沿着新的维度进行连接,拼接后的tensor比原tensor维度多1。
参数:

  • tensors:要连接的一系列的tensors(要拼接的tensor形状必须相等)。
  • dim:要进行连接的维度。
  • out:连接以后输出的新tensor
import torch
# dim=0
a = torch.randn([2, 3])
b = torch.randn([2, 3])
c = torch.stack((a,b), dim=0)
print(a.shape, b.shape, c.shape)
# torch.Size([2, 3]) torch.Size([2, 3]) torch.Size([2, 2, 3])

# dim=1
a = torch.randn([3, 4])
b = torch.randn([3, 4])
c = torch.stack((a,b), dim=1)
print(a.shape, b.shape, c.shape)
# torch.Size([3, 4]) torch.Size([3, 4]) torch.Size([3, 2, 4])

# dim=2
a = torch.randn([3, 4])
b = torch.randn([3, 4])
c = torch.stack((a,b), dim=2)
print(a.shape, b.shape, c.shape)
# torch.Size([3, 4]) torch.Size([3, 4]) torch.Size([3, 4, 2])

17.torch.vstack(tensors, *, out=None) → Tensor

按水平方向堆叠张量

import torch
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
print(torch.vstack((a,b)))  # shape=[2,3]
# tensor([[1, 2, 3],[4, 5, 6]])
a = torch.tensor([[1],[2],[3]]) # shape=[3, 1]
b = torch.tensor([[4],[5],[6]]) # shape=[3,1]
print(torch.vstack((a,b))) # shape=[6 1]
# tensor([[1],[2],[3],[4],[5],[6]])

18.torch.nonzero(input, *, out=None, as_tuple=False) → LongTensor or tuple of LongTensors

将我们的input中非零元素的索引返回,也可以返回满足指定条件下的元素。
参数:

  • input:需要进行返回索引的tensor。
  • out:指定输出
  • as_tuple(bool):此参数有两个取值,True和False,默认为False。
    1) 值为False时返回一个二维张量,其中每一行都是一个非零值的索引。
    2) 值为True时返回一维索引张量的元组,允许进行高级索引,因此x [x.nonzero(as_tuple = True)]给出张量x的所有非零值。在返回的元组中,每个索引张量都包含特定维度的非零索引。其实就是返回很多个元组,每一个元组都是值为False时每一列的值
import torch
a = torch.randint(2, (3,4))
print(a)
# tensor([[0, 0, 1, 0],
#         [0, 0, 1, 1],
#         [1, 0, 1, 1]])
print(torch.nonzero(a))
# tensor([[0, 2],
#         [1, 2],
#         [1, 3],
#         [2, 0],
#         [2, 2],
#         [2, 3]])
print(torch.nonzero(a, as_tuple=True))
# (tensor([0, 1, 1, 2, 2, 2]), 
#  tensor([2, 2, 3, 0, 2, 3]))
print(a[a.nonzero(as_tuple = True)])
# tensor([1, 1, 1, 1, 1, 1])

# a中大于0的元素的位置
print(torch.nonzero(a>0, as_tuple=True))
# (tensor([0, 1, 1, 2, 2, 2]), 
#  tensor([2, 2, 3, 0, 2, 3]))

19.torch.reshape(input, shape) → Tensor

返回一个与输入相同的数据和元素数量的张量,但具有指定的形状。如果可能,返回的张量将是输入的视图。否则,它将是一个副本。
一个维度可能是-1,在这种情况下,它是从剩余维度和输入中的元素数量推断出来的。

import torch
a = torch.arange(4.)
print(torch.reshape(a, (2, 2)))
# tensor([[ 0.,  1.], [ 2.,  3.]])
b = torch.tensor([[0, 1], [2, 3]])
torch.reshape(b, (-1,))
# tensor([ 0,  1,  2,  3])

20.torch.squeeze(input, dim=None, *, out=None) → Tensor

返回一个去掉input中所有维度大小为1的张量。例如,如果输入是形状:A×1×B×C×1×D那么输出张量就是形状:A×B×C×D。

import torch
x = torch.zeros(2, 1, 2, 1, 2)
print(x.size())
# torch.Size([2, 1, 2, 1, 2])
y = torch.squeeze(x)
print(y.size())
# torch.Size([2, 2, 2])
y = torch.squeeze(x, 0)
print(y.size())
# torch.Size([2, 1, 2, 1, 2])
y = torch.squeeze(x, 1)
print(y.size())
# torch.Size([2, 2, 1, 2])

21.torch.unsqueeze(input, dim=None) → Tensor

返回一个在指定位置插入新维度大小为1的张量。共享内存。

import torch
x = torch.tensor([1, 2, 3, 4])
print(torch.unsqueeze(x, 0))
# tensor([[ 1,  2,  3,  4]])
print(torch.unsqueeze(x, 1))
# tensor([[ 1],[ 2],[ 3],[ 4]])

22.torch.transpose(input, dim0, dim1, out=None) → Tensor

返回输入矩阵 input 的转置。交换维度 dim0 和 dim1。 输出张量与输入张量共享内存,
所以改变其中一个会导致另外一个也被修改。
torch.t(input, out=None) → Tensor
输入一个矩阵(2 维张量),并转置 0, 1 维。 可以被视为函数 transpose(input, 0, 1)
的简写。

x = torch.randn(2, 3)
print(x)
# tensor([[ 1.0028, -0.9893,  0.5809], [-0.1669,  0.7299,  0.4942]])
print(torch.transpose(x, 0, 1))
# tensor([[ 1.0028, -0.1669], [-0.9893,  0.7299], [ 0.5809,  0.4942]])

23.torch.unbind(input, dim=0) → seq

移去张量维数

import torch

# dim=0
print(torch.unbind(torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])))
# (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))

#dim=1
a = torch.rand(3, 4)
print(a)
# tensor([[0.4433, 0.5060, 0.8613, 0.1414],
#         [0.4245, 0.5876, 0.4906, 0.4352],
#         [0.1293, 0.4648, 0.1066, 0.7602]])
b = torch.unbind(a, 1)
print(b)
# (tensor([0.4433, 0.4245, 0.1293]), 
#  tensor([0.5060, 0.5876, 0.4648]), 
#  tensor([0.8613, 0.4906, 0.1066]), 
#  tensor([0.1414, 0.4352, 0.7602]))

#dim=2
a = torch.rand(3, 4, 2)
print(a)
# tensor([[[0.5595, 0.1910],[0.0918, 0.0681],[0.7964, 0.6436],[0.0025, 0.6071]],
#        [[0.1794, 0.6847],[0.4248, 0.2443],[0.6551, 0.3341],[0.0331, 0.5331]],
#        [[0.7538, 0.3053],[0.3053, 0.7342],[0.1947, 0.2462],[0.9642, 0.5596]]])
b = torch.unbind(a, 2)
print(b)
# (tensor([[0.5595, 0.0918, 0.7964, 0.0025],
#          [0.1794, 0.4248, 0.6551, 0.0331],
#          [0.7538, 0.3053, 0.1947, 0.9642]]), 
# tensor([[0.1910, 0.0681, 0.6436, 0.6071],
#         [0.6847, 0.2443, 0.3341, 0.5331],
#         [0.3053, 0.7342, 0.2462, 0.5596]]))

24.torch.split(tensor, split_size, dim=0)

将输入张量分割成相等形状的 chunks(如果可分)。 如果沿指定维的张量形状大小不能被
split_size 整分, 则最后一个分块会小于其它分块。
参数:

  • tensor (Tensor) – 待分割张量
  • split_size (int) – 单个分块的形状大小
  • dim (int) – 沿着此维进行分割
import torch
x = torch.randn(4,3)
print(x.shape)  # torch.Size([4, 3])
print(torch.split(x, 3, 0))
#(tensor([[ 1.6679,  0.4135,  0.4897],
#         [-1.5495,  0.8439,  1.3431],
#         [-1.7111, -1.4038,  1.5968]]), 
# tensor([[-0.1251, -2.5938, -0.1291]]))

print(torch.split(x, 3, 1))
# (tensor([[ 1.6679,  0.4135,  0.4897],
#          [-1.5495,  0.8439,  1.3431],
#          [-1.7111, -1.4038,  1.5968],
#          [-0.1251, -2.5938, -0.1291]]),)

25. torch.where(condition, x, y) → Tensor

根据条件返回从x或y中选择的元素的张量。
在这里插入图片描述

import torch
x = torch.randn(3, 2)
y = torch.ones(3, 2)
print(x)
# tensor([[-0.4620,  0.3139],
#         [ 0.3898, -0.7197],
#         [ 0.0478, -0.1657]])
print(torch.where(x > 0, x, y))
# tensor([[ 1.0000,  0.3139],
#         [ 0.3898,  1.0000],
#         [ 0.0478,  1.0000]])
x = torch.randn(2, 2, dtype=torch.double)
print(x)
# tensor([[ 1.0779,  0.0383],
#         [-0.8785, -1.1089]], dtype=torch.float64)
print(torch.where(x > 0, x, 0.))
# tensor([[1.0779, 0.0383],
#         [0.0000, 0.0000]], dtype=torch.float64)

torch.where(condition)与torch.nonzero(condition, as tuple=True)相等.

import torch
a = torch.tensor([[1, 0, -1, 2],[2, 4, 0, 3], [-1, 0, 2, 0]])
b = torch.where(a>0)
c = torch.nonzero(a>0, as_tuple=True)
print(b)
print(c)
# (tensor([0, 0, 1, 1, 1, 2]), tensor([0, 3, 0, 1, 3, 2]))
# (tensor([0, 0, 1, 1, 1, 2]), tensor([0, 3, 0, 1, 3, 2]))

26. torch.randperm(n, out=None) → LongTensor

给定参数 n,返回一个从 0 到 n-1 的随机整数排列。

import torch
print(torch.randperm(4))
# tensor([0, 2, 3, 1])

27.随机抽样(Random sampling )

torch.manual_seed(seed):设定生成随机数的种子
torch.initial_seed():返回生成随机数的原始种子值(python long)
torch.bernoulli(input, out=None) → Tensor:从伯努利分布中抽取二元随机数(0 或者 1)。

  • input (Tensor) – 输入为伯努利分布的概率值
  • out (Tensor, optional) – 输出张量(可选)
import torch
a = torch.Tensor(3, 3).uniform_(0, 1)
print(a)
# tensor([[0.1333, 0.3842, 0.1807],
#         [0.0344, 0.8019, 0.3724],
#         [0.4385, 0.8115, 0.5870]])
print(torch.bernoulli(a))
# tensor([[0., 1., 1.],
#         [0., 1., 0.],
#         [0., 1., 0.]])

torch.multinomial(input, num_samples,replacement=False, out=None) →LongTensor:返回一个张量,每行包含从 input 相应行中定义的多项分布中抽取的 num_samples 个样本。

  • input (Tensor) – 包含概率值的张量
  • num_samples (int) – 抽取的样本数
  • replacement (bool, optional) – 布尔值,决定是否能重复抽取
  • out (Tensor, optional) – 结果张量
import torch
weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) 
print(torch.multinomial(weights, 4))
# tensor([2, 1, 0, 3])
print(torch.multinomial(weights, 2))
# tensor([2, 1])

torch.normal(means, std, out=None):返回一个张量,包含从给定参数 means,std 的离散正态分布中抽取随机数

import torch
a = torch.normal(mean=torch.arange(1, 11, dtype=torch.float32), std=torch.arange(1, 0, -0.1))
print(a)
# tensor([-0.0578,  3.6174,  2.8741,  3.5766,  6.3145,  5.9814,  7.5412,  8.1185, 8.9289, 10.0889])
b= torch.normal(mean=1., std=torch.arange(1, 0, -0.1))
print(b)
# tensor([1.0448, 1.5626, 1.3038, 1.0531, 1.8195, 0.4030, 1.0526, 1.0245, 1.1231, 1.1754])
c= torch.normal(mean=0., std=1., size=(2, 3))
print(c)
# tensor([[ 0.9723,  0.8284, -1.7362], [ 1.2385,  1.1260,  3.1365]])

参考目录

https://blog.csdn.net/weixin_40920183/article/details/119814472
https://blog.csdn.net/Fluid_ray?t=1

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要下载PyTorch常用函数手册的PDF,可以按照以下步骤进行: 1. 打开浏览器,进入搜索引擎网站。 2. 在搜索框中输入关键词“PyTorch常用函数手册PDF下载”。 3. 根据搜索结果,选择一个可信的网站,例如官方文档或知名的技术博客。 4. 进入所选网站后,使用网站提供的搜索功能,搜索“PyTorch常用函数手册PDF”。 5. 在搜索结果中找到符合需求的链接或按钮,一般会有一个下载文件的选项。 6. 点击链接或按钮,开始下载PyTorch常用函数手册的PDF文件。 7. 下载完成后,可以在浏览器的下载文件夹中找到该PDF文件。 8. 双击该文件,使用所选的PDF阅读器打开手册。 如果无法找到可信的网站或下载链接,可以尝试以下方法: 1. 在搜索引擎中搜索“PyTorch官方文档”。 2. 进入PyTorch官方网站,找到文档页面或搜索框。 3. 在文档页面或搜索框中输入“常用函数手册”等相关关键词。 4. 在搜索结果中找到所需的PyTorch常用函数手册链接。 5. 点击链接,开始在线浏览该手册。 6. 在浏览器上方或手册界面中,应该有下载或导出为PDF的选项。 7. 点击下载或导出为PDF,将手册保存为PDF文件。 8. 打开下载的PDF文件,使用所选的PDF阅读器阅读PyTorch常用函数手册。 需要注意的是,PyTorch官方网站和其它可信来源的手册都是最可靠的资料,因此最好选择官方文档或来自官方推荐的网站。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值