1.摘要
MediaPipe 人脸检测是一种超快的人脸检测解决方案,具有 6 个landmarks和多人脸支持。它基于 BlazeFace,这是一种轻量级且性能良好的人脸检测器,专为移动 GPU 推理量身定制。
检测器的超实时性能使其能够应用于任何需要准确的面部感兴趣区域作为其他特定任务模型输入的实时取景器体验,例如 3D 面部关键点或几何估计(例如 MediaPipe Face Mesh)、面部特征或表情分类以及面部区域分割等。BlazeFace使用了一个轻量级的特征提取网络,其灵感来自于MobileNetV1/V2,但与MobileNetV1/V2不同,它是一个gpu友好的锚定方案,由Single Shot MultiBox Detector (SSD)改进而来,使用某种策略(an improved tie resolution strategy)替代非极大值抑制的。
2.解决方案的API
2.1参数配置
MODEL_SELECTION:索引为0或1的整数。使用0选择一个短距离模型,最适合距离相机2米以内的人脸,1选择一个全距离模型,最适合距离相机5米以内的人脸。对于全距离选项,采用稀疏模型来提高推理速度。如果未指定,默认为0。貌似此参数已经被淘汰。MIN_DETECTION_CONFIDENCE:来自人脸检测模型的最小置信值 ([0.0, 1.0]),以便将检测视为成功。默认为 0.5。
2.2输出
DETECTIONS:检测到的人脸的集合,其中每个人脸都表示为一个检测原始消息,其中包含一个边界框和 6 个关键点(右眼、左眼、鼻尖、嘴巴中心、右耳和左耳)。边界框由xmin和width(由图像宽度归一化为[0.0,1.0])以及ymin和height(由图像高度归一化为[0.0,1.0])组成。每个关键点由 x 和 y 组成,分别通过图像宽度和高度归一化为 [0.0, 1.0]。
3.Python API解决方案
支持配置选项:
- model_selection
- min_detection_confidence
(1)对于图片序列
# python3.6.5 mediapipe=0.8.3
import cv2
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
# 对于静态图像
IMAGE_FILES = ["trump.jpg"]
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:
for idx, file in enumerate(IMAGE_FILES):
image = cv2.imread(file)
# 转换BGR图像到RGB和使用MediaPipe人脸检测处理它
results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# 绘制人脸检测到每个人脸
if not results.detections:
continue
annotated_image = image.copy()
for detection in results.detections:
"""The enum type of the six face detection key points.
RIGHT_EYE = 0
LEFT_EYE = 1
NOSE_TIP = 2
MOUTH_CENTER = 3
RIGHT_EAR_TRAGION = 4
LEFT_EAR_TRAGION = 5
"""
print('Nose tip:')
print(mp_face_detection.get_key_point(detection, mp_face_detection.FaceKeyPoint.NOSE_TIP))
# Nose tip:
# x: 0.3519737124443054
# y: 0.4148605167865753
mp_drawing.draw_detection(annotated_image, detection)
cv2.imwrite('annotated_image' + str(idx) + '.png', annotated_image)
(2)对于视频
import cv2
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils

最低0.47元/天 解锁文章
7495

被折叠的 条评论
为什么被折叠?



