使用 Monai 和 PyTorch 预处理 3D Volumes以进行肿瘤分割

1.介绍

针对在使用传统图像处理工具时可能遇到的困难,深度学习已成为医疗保健领域的主要解决方案。

因为医学图像比标准图像更难处理(高对比度、人体的广泛变化……)深度学习用于分类、对象检测,尤其是分割任务。

在分割方面,深度学习用于分割人体器官,如肝脏、肺和……或分割来自身体不同部位的肿瘤。

医学图像有很多不同的类型,例如 MRI(主要用于脑肿瘤分割)、CT 扫描、PET 扫描等。

本文将重点介绍 CT 扫描,但同样的操作也适用于其他类型。

所以我们知道执行深度学习任务需要许多步骤,其中一个是数据预处理,这是我们在开始训练之前必须做的第一件事。这是本文的主题;我们将讨论可用于执行此预处理的工具。

准备数据因任务而异;例如,分类是最简单的,因为我们只需要准备图像,而对象检测和分割则需要我们准备图像以及标签(用于分割的边界框或掩码)。

在本文中,我们将以分割为例,它可以用于肿瘤或器官的分割。

在医学成像中,我们可以处理 2D 图像,可以是 dicom、JPG 或 PNG,也可以是 3D 卷(volumes),它们是一组切片,每个切片是一个 2D 文件(大多数时候是 dicom),而这个组是一个nifti 文件,代表整个患者或仅代表他身体的一部分。

2.我们将使用的工具

为了完成这个任务,我们将使用一个名为 monai 的开源框架,它基于我在实习期间使用的 PyTorch,发现它非常有用。

如果您想阅读其文档,请参阅此链接

3.方法

现在将开始编写我们的函数来执行 CT 扫描中肿瘤分割的预处理。第一步是使用 pip 或 conda 安装库,具体取决于您使用的环境。

pip install monai

我强烈建议你为你的项目设置一个虚拟环境,因为这个库直接安装在系统中时并不总是有效。

然后你需要安装 PyTorch 和一些 monai 的依赖。

pip install torch

pip install torch-vision

pip install "monai-weekly[gdwon, nibabel,tqdm]"

然后你需要包含你需要的库。

在这里插入图片描述
现在我们将讨论如何加载数据。对此有两种方法。

1- 第一种是单独加载图像和掩码(如果您想进行图像分类,可以使用这种方式,但它也适用于分割)。

2- 第二种方法是创建一个带有两列的Python字典,一列用于图像路径,一列用于标签路径。然后在每一行输入具有相应掩码的图像的路径。

就个人而言,我更喜欢第二种方法,因为当我们应用变换时,我们将能够只选择图像或标签或两者的关键工作,而不是为图像创建变换并为标签创建变换(掩码)。

您现在必须创建一个包含整个数据集路径的变量。就我而言,我有四个文件夹:TrainData、TrainLabels 训练图像和掩码和ValData、ValLabels 验证图像和掩码。

因此,要创建一个字典来存储路径,请使用以下代码行:
在这里插入图片描述

4.变换

要将多个变换应用于同一患者,我们将使用 monaicompose功能,它允许您组合所需的任何变换(在 monai 文档中定义的变换)。

在应用任何转换时,您应该注意一些事情:一些步骤是必需的,而另一些是可选的。

使用 monai 时,主要的转换是“Load image”以加载nifty的文件,以及“ToTensor”将转换后的数据转换为torch张量,以便我们可以将其用于训练。

现在我们已经介绍了基本的转换,我们将继续讨论其他转换。我将讨论在实习期间特别重要的五个转换。

AddChanneld:这个函数会为我们的图像和标签添加一个通道(当我说图像时,我是指多个切片的volume),因为我们在做肿瘤分割时,需要一个通道来扮演背景或肿瘤的角色。

Spacingd:这个函数将帮助我们改变体素维度,因为我们不知道医学图像数据集是通过相同扫描还是不同扫描获得的,因此它们可能具有不同的体素维度(宽度、高度、深度),所以我们需要将它们推广到相同的维度。

ScalIntensityRanged:这个函数将帮助我们同时执行两个任务:第一个是将密集视觉的对比度改变为更明显的东西,第二个是将体素值归一化并将它们置于 0 和 1 之间这样训练会更快。

CropForegroundd:这个功能将帮助我们裁剪掉我们不需要的图像的空白区域,只留下感兴趣的区域。

Resized:最后,这个函数是可选的,但在我看来,如果你使用了cropforeground函数,它是必需的,因为将进行裁剪的函数将根据每个患者的不同得到随机尺寸的输出,所以如果我们不添加为所有患者提供相同尺寸的操作,我们的模型将不起作用。
在这里插入图片描述
如您所见,我们使用的每个函数的末尾都有一个“d” ,这表示使用字典(如果您不使用字典,则需要将其删除)。我们为每个操作添加了参数“keys”,以指定我们是否希望将该变换应用于图像、标签或两者。您可以看到我们几乎将所有函数都应用于标签和图像,但在 ScaleIntensityRange 中我们只将其应用于图像,因为我们不需要更改标签的强度或标准化标签的值。

5.数据加载器

现在,与任何深度学习代码一样,我们必须先加载数据及其转换,然后才能开始训练;为此,必须使用两个基本功能。

Dataset:此函数将定义数据及其转换,因此如果您有训练集和验证集,则需要创建两个“数据集”函数,一个用于将训练数据与其转换组合,另一个用于组合验证数据及其转换。当然,如果对训练集和验证集应用相同的变换,则必须在函数dataset的参数transform中使用相同的变换。

Dataloader:这个函数将以特定的批处理大小将数据加载到RAM中。 将有两个数据加载器,一个用于训练,一个用于验证。
在这里插入图片描述

6.绘制一个例子

应用转换后,您可以绘制一些切片以查看使用和不使用转换的数据有何不同。

您可以使用 monai 函数“first”从数据加载器中获取第一个项目,这将是第一个患者。

以下是一些代码行,可帮助您绘制示例。
在这里插入图片描述
现在让我们看看有和没有转换的输出:
在这里插入图片描述
左边是没有变换的切片,中间是有变换的切片,右边是对应的标签。

这就是您使用 monai 准备进行 3D volumes分割的方式。如果你想看更多的变换,去monai的网站。但是,一些转换是为数据增强而不是预处理而设计的。

7.完整代码

import os
from glob import glob

import torch
from monai.transforms import (
    Compose,
    LoadImaged,
    ToTensord,
    AddChanneld,
    Spacingd,
    ScaleIntensityRanged,
    CropForegroundd,
    Resized,

)

from monai.data import Dataset, DataLoader
from monai.utils import first
import matplotlib.pyplot as plt

data_dir = 'D:/3_Stage/ALL_THE_DATA/fixed_data_03_august/all_together'

train_images = sorted(glob(os.path.join(data_dir, 'TrainData', '*.nii.gz')))
train_labels = sorted(glob(os.path.join(data_dir, 'TrainLabels', '*.nii.gz')))

val_images = sorted(glob(os.path.join(data_dir, 'ValData', '*.nii.gz')))
val_labels = sorted(glob(os.path.join(data_dir, 'ValLabels', '*.nii.gz')))

train_files = [{"image": image_name, 'label': label_name} for image_name, label_name in zip(train_images, train_labels)]
val_files = [{"image": image_name, 'label': label_name} for image_name, label_name in zip(val_images, val_labels)]


# load the images
# do any transforms
# need to convert them into torch tensors

orig_transforms = Compose(

    [
        LoadImaged(keys=['image', 'label']),
        AddChanneld(keys=['image', 'label']),
        
        ToTensord(keys=['image', 'label'])
    ]
)

train_transforms = Compose(

    [
        LoadImaged(keys=['image', 'label']),
        AddChanneld(keys=['image', 'label']),
        Spacingd(keys=['image', 'label'], pixdim=(1.5, 1.5, 2)),
        ScaleIntensityRanged(keys='image', a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True),
        CropForegroundd(keys=['image', 'label'], source_key='image'),
        Resized(keys=['image', 'label'], spatial_size=[128,128,128]),
        ToTensord(keys=['image', 'label'])
    ]
)


val_transforms = Compose(

    [
        LoadImaged(keys=['image', 'label']),
        AddChanneld(keys=['image', 'label']),
        Spacingd(keys=['image', 'label'], pixdim=(1.5, 1.5, 2)),
        ScaleIntensityRanged(keys='image', a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True),
        ToTensord(keys=['image', 'label'])
    ]
)


orig_ds = Dataset(data=train_files, transform=orig_transforms)
orig_loader = DataLoader(orig_ds, batch_size=1)

train_ds = Dataset(data=train_files, transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=1)

val_ds = Dataset(data=val_files, transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=1)

test_patient = first(train_loader)
orig_patient = first(orig_loader)

print(torch.min(test_patient['image']))
print(torch.max(test_patient['image']))
# tensor(-3024.)
# tensor(1911.7750)

plt.figure('test', (12, 6))

plt.subplot(1, 3, 1)
plt.title('Orig patient')
plt.imshow(orig_patient['image'][0, 0, : ,: ,30], cmap= "gray")

plt.subplot(1, 3, 2)
plt.title('Slice of a patient')
plt.imshow(test_patient['image'][0, 0, : ,: ,30], cmap= "gray")

plt.subplot(1,3,3)
plt.title('Label of a patient')
plt.imshow(test_patient['label'][0, 0, : ,: ,30])
plt.show()

参考目录

https://pycad.co/preprocessing-3d-volumes-for-tumor-segmentation-using-monai-and-pytorch/

  • 6
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip基于python深度学习肿瘤辅助诊断系统(图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断).zip 【资源说明】 1、该资源内项目代码都是经过测试运行成功,功能正常的情况下才上传的,请放心下载使用。 2、适用人群:主要针对计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、数学、电子信息等)的同学或企业员工下载使用,具有较高的学习借鉴价值。 3、不仅适合小白学习实战练习,也可作为大作业、课程设计、毕设项目、初期项目立项演示等,欢迎下载,互相学习,共同进步!
好的,首先需要导入monai和numpy库: ```python import monai import numpy as np ``` 接着,我们需要定义一个函数,使用`monai.transform`中的`Rotate`来实现旋转操作。该函数需要输入标签数据和旋转角度,输出旋转后的标签数据。 ```python def rotate_label(label, angle): # 将标签数据转换为numpy数组 label_np = label.numpy() # 找到标签为1的位置 indices = np.where(label_np == 1) # 如果没有标签为1的位置,则返回原始标签数据 if len(indices[0]) == 0: return label # 计算旋转中心点 center = [np.mean(indices[0]), np.mean(indices[1]), np.mean(indices[2])] # 定义旋转操作 rotate = monai.transforms.Rotate(angle=angle, center=center, reshape=False) # 执行旋转操作 label_np_rot = rotate(label_np) # 将旋转后的标签数据转换为tensor并返回 return torch.from_numpy(label_np_rot) ``` 在这个函数中,我们首先将标签数据转换为numpy数组,然后找到标签为1的位置,并计算旋转中心点。接着,我们使用`monai.transforms.Rotate`定义旋转操作,其中`angle`表示旋转角度,`center`表示旋转中心点,`reshape=False`表示不改变数组形状。最后,我们执行旋转操作得到旋转后的标签数据,并将其转换为tensor返回。 接下来,我们可以使用定义好的函数来对标签为1的数据做旋转,例如: ```python # 假设label是一个形状为(1, 1, 64, 64, 64)的tensor,其中1表示batch size label_rotated = rotate_label(label[0, 0], angle=30) ``` 这样,我们就可以得到旋转30度后的标签数据了。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值