强化学习&动态规划2.3 | 策略迭代 Policy Iteration

本文探讨了策略迭代算法,它结合了迭代策略评估和策略优化。从均匀随机策略开始,通过不断迭代改进策略和计算值函数,直至找到最优策略。策略评估阶段可以设定迭代次数作为终止条件,这种形式被称为截断策略迭代。即使值函数未完全收敛,只要状态动作对的相对价值正确,也能得到相同的最优策略。
摘要由CSDN通过智能技术生成

将迭代策略评估和策略优化结合起来,就得到了策略迭代算法
在这里插入图片描述
算法的伪代码如下,从对等概率随机策略开始,对于每个状态选择动作的概率是一样的。然后进行迭代策略评估获得相应的值函数和策略完善获得更好或者对等的的策略,直至收敛。

在这里插入图片描述
当然在策略评估这一过程中,我们可以不用θ作为我们的终止条件,而是设定迭代次数,这个算法称为截断策略迭代
在这里插入图片描述
因为我们其实不用获得极其接近结果的值函数才获得最优策略,如果状态动作对之间的相对值正确,改策略实际上是相同的最优策略
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ASKCOS

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值