概率与统计样卷一

试卷一

一、填空(每小题2分,共10分)

1.设是三个随机事件,则至少发生两个可表示为______________________。

2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。

3.已知互斥的两个事件满足,则___________。

4.设为两个随机事件,,则___________。

5.设是三个随机事件,,则至少发生一个的概率为___________。

 

二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分)

1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则(     )。

(A) 取到2只红球                           (B) 取到1只白球

(C) 没有取到白球                          (D) 至少取到1只红球

2.对掷一枚硬币的试验, “出现正面”称为(     )。

(A) 随机事件                              (B) 必然事件

(C) 不可能事件                            (D) 样本空间

3. 设AB为随机事件,则(     )。

(A)  A                              (BB           

(CAB                             (D)  φ

4. 设是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是(     )。

(A)  互斥                          (B) 不互斥

(C)               (D)

5. 设为两随机事件,且,则下列式子正确的是(     )。

(A)                    (B)

(C)                     (D)      

6. 设相互独立,则(     )。

(A)                                    (B)

(C)                                   (D)

7.设是三个随机事件,且有,则(     )。

(A) 0.1                                  (B) 0.6

(C) 0.8                                  (D)0.7

8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为(     )。

(Ap^2(1– p)^3                         (B)  4p(1– p)^3         

 (C)  5p^2(1– p)^3                       (D)  4p^2(1– p)^3  

9. 设A、B为两随机事件,且,则下列式子正确的是(     )。

(A)                (B)

(C)                  (D)

10. 设事件AB同时发生时,事件C一定发生,则(     )。

(AP(A B) = P (C)                    (BP (A) + P (B) – P (C) ≤ 1

(CP (A) + P (B) – P (C) ≥ 1          (DP (A) + P (B) ≤ P (C)

三、计算与应用题(每小题8分,共64分)

1. 袋中装有5个白球,3个黑球。从中一次任取两个。

取到的两个球颜色不同的概率。

 

2. 10把钥匙有3把能把门锁打开。今任取两把。

能打开门的概率。

 

3. 一间宿舍住有6位同学,

他们中有4个人的生日在同一个月份概率。

 

4. 50个产品中有46个合格品与4个次品,从中一次抽取3个,

至少取到一个次品的概率。

 

5. 加工某种零件,需经过三道工序,假定第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且任何一道工序是否出次品与其它各道工序无关。

该种零件的次品率。

 

6. 已知某品的合格率为0.95,而合格品中的一级品率为0.65。

该产品的一级品率。

 

7. 一箱产品共100件,其中次品个数从0到2是等可能的。开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收。若已知该箱产品已通过验收,

其中确实没有次品的概率。

 

8. 某厂的产品,按甲工艺加工,按乙工艺加工,两种工艺加工出来的产品的合格率分别为0.8与0.9。现从该厂的产品中有放回地取5件来检验,

其中最多有一件次品的概率。

 

四、证明题(共6分)

。证明:

 

 

 

试卷一  

参考答案

一、填空

1.  或

2. 出现的点数恰为5

3.

互斥

  则

4. 0.6

故 

5.

至少发生一个,即为

又由  得

 

二、单项选择

1.

2. A

3. A

  利用集合的运算性质可得.

4.

互斥

故 

5.

6.

相互独立

7.

 且

8.  

9. B

10. B

故  P (A) + P (B) – P (C) ≤ 1

三、计算与应用题

1. 解:

表示“取到的两球颜色不同”,则

而样本点总数

2. 解:

表示“能把门锁打开”,则,而

3. 解:

表示“有4个人的生日在同一月份”,则

而样本点总数为

4. 解:

表示“至少取到一个次品”,因其较复杂,考虑逆事件=“没有取到次品”

包含的样本点数为。而样本点总数为

5. 解:

“任取一个零件为次品”

由题意要求,但较复杂,考虑逆事件“任取一个零件为正品”,表示通过三道工序都合格,

于是

6. 解:

表示“产品是一极品”,表示“产品是合格品”

显然,则

于是

即 该产品的一级品率为

7. 解:

“箱中有件次品”,由题设,有

又设 “该箱产品通过验收”,由全概率公式,有

于是

8. 解:

依题意,该厂产品的合格率为,

于是,次品率为

表示“有放回取5件,最多取到一件次品”

 

四、证明题

证明

 ,  ,

由概率的性质知      则

  

且 

故  

统计信号处理基础》是本经典的信号处理教材,由Steven M. Kay撰写。本书对统计信号处理的基本理论进行了全面而深入的介绍。 首先,本书从概率论和统计学的基础理论出发,介绍了随机变量、概率密度函数、概率质量函数等概念。通过对概率分布、统计参数等的讨论,读者可以建立对统计信号处理的数学理论基础。 其次,本书详细介绍了随机过程的基本概念和理论。随机过程是信号处理中经常遇到的种情况,它在时间上具有随机性。本书通过对平稳性、功率谱密度、互相关函数以及高斯过程等的讨论,使读者对随机过程有了更加深刻的理解。 接着,本书介绍了信号估计问题。信号估计是统计信号处理的核心问题之,包括参数估计、线性最小均方误差估计、贝叶斯估计等。通过对估计问题的讨论,读者可以学会如何利用统计学原理从观测数据中获得对信号的估计。 最后,本书介绍了经典的线性滤波器设计问题。线性滤波器是信号处理中非常重要的工具,本书通过对FIR滤波器和IIR滤波器的设计原理和方法的介绍,帮助读者掌握线性滤波器的设计技巧。 总的来说, 《统计信号处理基础》深入浅出地介绍了统计信号处理的基本理论和常见方法,结合大量的例子和练习题,使读者逐步掌握统计信号处理的核心概念和技术。无论是从事相关学科的学生、研究者,还是从事相关工作的工程师,都可以从本书中受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值