一副扑克牌54张,现分成3等份每份18张,问大小王出现在同一份中的概率是多少?
方法一:
扑克牌54张分成3等份,先从54张牌中选18张,再从剩余36张选18张,最后再从18中拿18张,因此共有
M
=
C
54
18
C
36
18
C
18
18
M={C_{54}^{18}}{C_{36}^{18}}{C_{18}^{18}}
M=C5418C3618C1818种分法。
其中大小王出现在同一份中的分法是把两张大小王放在3份中的1份,再从剩余52张中选16张放入大小王所在的那份,再从剩余36张选18张,最后再从18中拿18张,因此共有:
N
=
C
3
1
C
52
16
C
36
18
C
18
18
N={C_{3}^{1}}{C_{52}^{16}}{C_{36}^{18}}{C_{18}^{18}}
N=C31C5216C3618C1818种。
因此所求概率为:
P
=
N
/
M
=
17
53
P=N / M=\frac {17}{53}
P=N/M=5317。
方法二:
设三份分别为A、B、C。大小王之一肯定在其中一份中,假设在A中,概率为1/3。A中剩余17张牌中可能含有另一张王,而B、C中的18张牌也可能含有另一张王,因此A份中含有另一张王的概率是
17
/
(
17
+
18
+
18
)
=
17
/
53
17/(17+18+18)=17/53
17/(17+18+18)=17/53。
也因此可知,A份中同时含有大小王的概率为:
(
1
/
3
)
∗
(
17
/
53
)
(1/3) *( 17/53)
(1/3)∗(17/53)。
B中C中同时含有大小王的概率同A,因此所求概率为:
3
∗
(
(
1
/
3
)
∗
(
17
/
53
)
)
=
17
/
53
3*((1/3 )* (17/53))=17/53
3∗((1/3)∗(17/53))=17/53。