凸优化

凸优化

  1. 标准形式的凸优化问题
  2. 局部最优解与全局最优解
  3. 可微函数f_0的最优性准则
  4. 等价的凸问题
  5. 拟凸优化

标准形式的凸优化问题

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} f_i(x)\leq 0& i=1,\cdots m \\ a_i^T=b_i&i=1,\cdots p \end{matrix}

f_0,d_1,f_2\cdots ,f_m是凸函数,等式约束是仿射函数。则此优化问题是凸优化问题。

也可以写成

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} f_i(x)\leq 0& i=1,\cdots m \\ Ax=b& \end{matrix}

重要性质:凸优化问题的可行集也是凸集。

证明:可行集是满足不等式约束和等式约束的点的集合,首先不等式约束函数f_i是凸函数,满足不等式约束f_i(x)\leq 0的x,相当于是f_i的0-下水平集,凸函数的下水平集是凸集,所以满足每个不等式约束的x均是凸集,同时满足这些不等式约束的x是这些凸集的交集仍为凸集。对于等式约束,满足每个仿射函数的x是凸集,同时满足多个仿射函数的x是凸集的交集也是凸集。同时考虑不等式约束和等式约束,可知凸优化问题的可行集也是凸集。

例子:

minimize\, \, f_0(x)=x_1^2+x_2^2 \\ subject\, \, to\, \, \begin{matrix} f_1(x)=x_1/(1+x_2^2)\leq 0& \\ h_1(x)=(x_1+x_2)^2=0& \end{matrix}

首先判断可行集,由两个约束函数可推出x_1+x_2=0,x_1\leq 0,可知可行集是凸集。

f_0是凸函数。但是这不是一个凸优化问题,因为其不等式约束函数不是凸函数,等式约束函数也不是仿射函数。

但可以得到其等价的凸优化问题:

minimize\, \, f_0(x)=x_1^2+x_2^2 \\ subject\, \, to\, \, \begin{matrix} f_1(x)=x_1\leq 0& \\ h_1(x)=x_1+x_2=0& \end{matrix}

局部最优解与全局最优解

凸优化问题的基础性质:局部最优解也是全局最优解。

证明:

假设x是局部最优解,且存在一个可行点y,f_0(y)\leq f_0(x)

因为x是局部最优解,故存在一些R,

R>0,f_0(x)=inf\left \{ f_0(z)|z\, is \, feasible,\begin{Vmatrix} z-x \end{Vmatrix}_2\leq R\right \}

因为凸优化问题的可行集是凸集,故取\forall \theta \in[0,1],z=\theta y+(1-\theta)x都属于可行集。

因为f_0(y)\leq f_0(x),故\begin{Vmatrix} y-x \end{Vmatrix}_2> R,此时令\theta =\frac{R}{2\begin{Vmatrix} y-x \end{Vmatrix}_2}。可知\theta \in(0,1/2)此时

\begin{Vmatrix} z-x \end{Vmatrix}_2= \begin{Vmatrix} -\theta x+\theta y \end{Vmatrix}_2 =\begin{Vmatrix} \theta(y-x) \end{Vmatrix}_2

= \begin{Vmatrix} \frac{R}{2\begin{Vmatrix}y-x \end{Vmatrix}_2}(y-x) \end{Vmatrix}_2= \frac{R}{2\begin{Vmatrix}y-x \end{Vmatrix}_2}\begin{Vmatrix} (y-x) \end{Vmatrix}_2=R/2< R

\Rightarrow f_0(z)\geq f_0(x)

而根据凸函数性质:

f_0(z)=f_0(\theta y+(1-\theta)x)\leq \theta f_0(y)+(1-\theta)f_0(x)< f_0(x)

与上式矛盾。故凸优化问题中局部最优解就是全局最优解。

可微函数f_0的最优性准则

f_0是可微凸函数时,根据凸函数一阶条件,可知\forall x,y\in dom(f_0),f_0(y)\geq f_0(x)+\bigtriangledown ^Tf_0(x)(y-x)

如果x是最优解,对任意的y属于可行集,首先满足f_0(y)\geq f_0(x)+\bigtriangledown ^Tf_0(x)(y-x),同时满足f_0(y)\geq f_0(x)。所以x是最优解的充要条件就是对任意的y属于可行集,\bigtriangledown ^Tf_0(x)(y-x)\geq 0

\bigtriangledown ^Tf_0(x)(y-x)\geq 0等价于-\bigtriangledown ^Tf_0(x)(y-x)\leq 0,故几何上如果\bigtriangledown ^Tf_0(x)\neq 0-\bigtriangledown ^Tf_0(x)在可行集上定义了一个支撑超平面。

1)对于无约束问题:

可行集就是f_0的定义域,所以x是最优解的充要条件就是\bigtriangledown f_0(x)=0

证明:因为f_0可微,所以其定义域是开的,因此与x足够近的点都可行,取y=-t\bigtriangledown f_0(x),t\in R,t为很小正数时,y可行,于是

\bigtriangledown ^Tf_0(x)(y-x)= -t\bigtriangledown ^Tf_0(x) \bigtriangledown f_0(x)=-t\begin{Vmatrix}\bigtriangledown f_0(x) \end{Vmatrix}_2,要想满足\bigtriangledown ^Tf_0(x)(y-x)\geq 0,只能\bigtriangledown f_0(x)=0

2)对于只有等式约束的问题:

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} Ax=b& \end{matrix}

可行解的最优性条件:对任意的y属于可行集,即\forall \left \{ y|Ay=b \right \},\bigtriangledown ^Tf_0(x)(y-x)\geq 0,因为x,y都是可行解,令y=x+v,\forall v\in N(A),N(A)表示矩阵A的零空间,v\in N(A)\Leftrightarrow Av=0,

将x,y代入最优条件:\bigtriangledown ^Tf_0(x)v\geq 0,\forall v\in N(A),即线性函数非负,故\bigtriangledown ^Tf_0(x)v=0,\forall v\in N(A)

\bigtriangledown f_0(x)\perp N(A)又因为N(A)^{\perp }=R(A^T)

\Rightarrow \bigtriangledown f_0(x)\in R(A^T)\Rightarrow \exists v\in R^p,A^Tv=\bigtriangledown f_0(x)\Leftrightarrow \exists v\in R^p,A^Tv+\bigtriangledown f_0(x)=0

上述最优性条件也可以拉格朗日乘子法得到,令L=f_0(x)+\lambda (Ax-b)

\frac{\partial L}{\partial x}=\bigtriangledown f_0(x)+A^T\lambda,令其为0,得到最优性条件。

3)对于非负象限的极小化问题:

minimize\, \, f_0(x) \, \, \, \\subject\, \, to\, \, x\geq 0

当x为最优解时,最优性条件:\forall y\geq 0,\bigtriangledown ^Tf_0(x)(y-x)\geq 0。而\bigtriangledown ^Tf_0(x)(y-x)\geq 0是y的线性函数,在y\geq 0时,如果\bigtriangledown ^Tf_0(x)< 0时,函数无下界,即最优条件不可能恒成立,故\bigtriangledown ^Tf_0(x)\geq 0

于是最优条件写成:

\forall y\geq 0,\bigtriangledown ^Tf_0(x)y+(-\bigtriangledown ^Tf_0(x)x)\geq 0

所以要使上式恒成立要求-\bigtriangledown ^Tf_0(x)x\geq 0,而\bigtriangledown ^Tf_0(x)\geq 0x\geq 0,所以只能是\bigtriangledown ^Tf_0(x)x=0

\sum _{i=1}^n(\bigtriangledown f_0(x))_ix_i=0

等价的凸问题

保持问题凸性的转换有:消除等式约束、引入等式约束、引入松弛变量、上境图问题形式、极小化部分变量

消除等式约束

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} f_i(x)\leq 0& i=1,\cdots m \\ Ax=b& \end{matrix}

等价于

minimize\, \, f_0(Fz+x_0) \\ subject\, \, to\, \, \begin{matrix} f_i(Fz+x_0)\leq 0& i=1,\cdots m \end{matrix}

x_0是Ax=b的特解,F的列可以长成A的零空间。

引入等式约束

minimize\, \, f_0(A_0x+b_0) \\ subject\, \, to\, \, \begin{matrix} f_i(A_ix+b_i)\leq 0& i=1,\cdots m \end{matrix}

等价于

minimize\, \, f_0(y_0) \\ subject\, \, to\, \, \begin{matrix} f_i(y_i)\leq 0& i=1,\cdots m \\y_i=A_ix+b_i& i=1,\cdots m\end{matrix}

引入松弛变量

minimize\, \, f_0(x) \\ subject\, \, to\, \, a_i^Tx\leq b_i,i=1,2\cdots m

等价于

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} a_i^Tx+ s_i=b_i,i=1,2\cdots m \\ s_i\geq 0,i=1,2\cdots m \end{matrix}

上境图形式

凸优化问题的上境图形式:

minimize\, \, t \\ subject\, \, to\, \, \begin{matrix} f_0(x)-t\leq 0 \\ f_i(x)\leq 0,i=1,2\cdots m \\ a_i^Tx=b_i ,i=1,2\cdots p \end{matrix}

极小化部分变量

极小化凸函数的部分变量将保持凸性不变,

minimize\, \, f_0(x_1,x_2) \\ subject\, \, to\, \, \begin{matrix} f_i(x_1)\leq 0& i=1,\cdots m \end{matrix}

等价于

minimize\, \, \tilde{f_0}(x_1) \\ subject\, \, to\, \, \begin{matrix} f_i(x_1)\leq 0& i=1,\cdots m\end{matrix}

\tilde{f_0}(x_1) =\underset{x_2}{sup}\, f_0(x_1,x_2)

拟凸优化

拟凸优化的标准形式

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} f_i(x)\leq 0& i=1,\cdots m \\ a_i^T=b_i&i=1,\cdots p \end{matrix}

f_1,f_2\cdots ,f_m是凸函数,等式约束是仿射函数,f_0是拟凸函数。则此优化问题是拟凸优化问题。

拟凸优化问题的局部最优解不一定是全局最优解。

如上图(x,f_0(x))是局部最优解但是不是全局最优解。

用一族凸函数不等式表示拟凸函数的下水平集

选择一族凸函数\phi _t:R^n\rightarrow R,t \in R,t是凸函数的编号,这些函数满足:

f(x)\leq t\Leftrightarrow \phi _t(x)\leq 0,即拟凸函数的t下水平集是凸函数\phi _t的0下水平集。

并且,对于每个x,\phi _t(x)都是t的非增函数。

注意:t固定时,每个\phi _t(x)是x的凸函数。

例子:

f_0(x)=p(x)/q(x),其中p是凸函数,q是凹函数,在定义域上,p(x)\geq 0,q(x)> 0

则可取\phi _t(x)=p(x)-tq(x)

说明:(1)\phi _t(x)是凸的:p是凸的,q是凹的,但-q是凸的,所以\phi _t(x)是凸的。

(2)满足:p(x)/q(x)\leq t\Leftrightarrow \phi _t(x)\leq 0

求解拟凸优化的二分法

思想:有一个区间,包含最优解,取区间的中点,判断最优解在上半区间还是下半区间,然后更新区间,不断将区间缩小为原来的一般直到找到足够小的区间。

算法:

给定l\leq p^*,u\geq p^*,容忍度\varepsilon >0

重复一下步骤:

  1. t=(l+u)/2
  2. 求解凸可行性问题
  3. 如果问题可行,u=t,否则l=t

直到u-l< \varepsilon

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  •                     <li class="tool-item tool-active is-like "><a href="javascript:;"><svg class="icon" aria-hidden="true">
                            <use xlink:href="#csdnc-thumbsup"></use>
                        </svg><span class="name">点赞</span>
                        <span class="count">4</span>
                        </a></li>
                        <li class="tool-item tool-active is-collection "><a href="javascript:;" data-report-click="{&quot;mod&quot;:&quot;popu_824&quot;}"><svg class="icon" aria-hidden="true">
                            <use xlink:href="#icon-csdnc-Collection-G"></use>
                        </svg><span class="name">收藏</span></a></li>
                        <li class="tool-item tool-active is-share"><a href="javascript:;"><svg class="icon" aria-hidden="true">
                            <use xlink:href="#icon-csdnc-fenxiang"></use>
                        </svg>分享</a></li>
                        <!--打赏开始-->
                                                <!--打赏结束-->
                                                <li class="tool-item tool-more">
                            <a>
                            <svg t="1575545411852" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="5717" xmlns:xlink="http://www.w3.org/1999/xlink" width="200" height="200"><defs><style type="text/css"></style></defs><path d="M179.176 499.222m-113.245 0a113.245 113.245 0 1 0 226.49 0 113.245 113.245 0 1 0-226.49 0Z" p-id="5718"></path><path d="M509.684 499.222m-113.245 0a113.245 113.245 0 1 0 226.49 0 113.245 113.245 0 1 0-226.49 0Z" p-id="5719"></path><path d="M846.175 499.222m-113.245 0a113.245 113.245 0 1 0 226.49 0 113.245 113.245 0 1 0-226.49 0Z" p-id="5720"></path></svg>
                            </a>
                            <ul class="more-box">
                                <li class="item"><a class="article-report">文章举报</a></li>
                            </ul>
                        </li>
                                            </ul>
                </div>
                            </div>
            <div class="person-messagebox">
                <div class="left-message"><a href="https://blog.csdn.net/wangchy29">
                    <img src="https://profile.csdnimg.cn/C/A/4/3_wangchy29" class="avatar_pic" username="wangchy29">
                                            <img src="https://g.csdnimg.cn/static/user-reg-year/1x/2.png" class="user-years">
                                    </a></div>
                <div class="middle-message">
                                        <div class="title"><span class="tit"><a href="https://blog.csdn.net/wangchy29" data-report-click="{&quot;mod&quot;:&quot;popu_379&quot;}" target="_blank">沐阳听风666</a></span>
                                            </div>
                    <div class="text"><span>发布了155 篇原创文章</span> · <span>获赞 31</span> · <span>访问量 5万+</span></div>
                </div>
                                <div class="right-message">
                                            <a href="https://im.csdn.net/im/main.html?userName=wangchy29" target="_blank" class="btn btn-sm btn-red-hollow bt-button personal-letter">私信
                        </a>
                                                            <a class="btn btn-sm  bt-button personal-watch" data-report-click="{&quot;mod&quot;:&quot;popu_379&quot;}">关注</a>
                                    </div>
                            </div>
                    </div>
    </article>
    

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聆一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值