<!--一个博主专栏付费入口结束-->
<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-d284373521.css">
<div id="content_views" class="markdown_views prism-atom-one-dark">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
<path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
</svg>
<p>转载自:<a href="https://blog.csdn.net/ssswill/article/details/90203428" rel="nofollow">https://blog.csdn.net/ssswill/article/details/90203428</a></p>
如果仅仅是类不平衡,则使用class_weight,sample_weights则是类内样本之间还不平衡的时候使用
1. 二者初步介绍
在keras的中文官方文档中,写到:
可以结合着一起看,出自:https://stackoverflow.com/questions/48315094/using-sample-weight-in-keras-for-sequence-labelling
2. 注意事项
sample_weight会覆盖class_weight,所以二者用其一。
3. 几种使用class_weight的方法
- 直接用一个字典
2.借助sklearn.utils.class_weight来实现weight的获取
注意蓝框里的话,转为一个字典哦。
3.自己设计一个函数进行权重的计算,也是很有趣的一种方式
上面截图出自:
https://datascience.stackexchange.com/questions/13490/how-to-set-class-weights-for-imbalanced-classes-in-keras
如果仅仅是类不平衡,则使用class_weight,sample_weights则是类内样本之间还不平衡的时候使用。
</div>
<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-b6c3c6d139.css" rel="stylesheet">
</div>