On Direction Derivative of Lie Groups

On Direction Derivative of Lie Groups

This article is inspired by Henry Taubes’s Differential Geometry

If ∥ A ∥ < 1 \|A\| < 1 A<1, then ( I − A ) − 1 = I + A + A 2 + ⋯ + A n + ⋯ (I - A)^{-1}=I + A + A^2 + \cdots + A^n + \cdots (IA)1=I+A+A2++An+

proof. First, the RHS does converge if ∥ A ∥ < 1 \|A\|<1 A<1, for
∥ ∑ n = 0 ∞ A n ∥ ≤ ∑ n = 0 ∞ ∥ A n ∥ ≤ ∑ n = 0 ∞ ∥ A ∥ n = 1 1 − ∥ A ∥ \| \sum_{n=0}^\infty A^n\| \le \sum_{n=0}^\infty \|A^n\| \le \sum_{n=0}^\infty\|A\|^n = \frac 1{1 - \|A\|} n=0Ann=0Ann=0An=1A1
Next, we show that the RHS is indeed the inverse of I − A I- A IA, for
∑ n = 0 ∞ A n ( I − A ) = ∑ n = 0 ∞ A n − ∑ n = 1 ∞ A n = I \sum_{n=0}^\infty A^n(I - A) = \sum_{n=0}^\infty A^n - \sum_{n=1}^\infty A^n = I n=0An(IA)=n=0Ann=1An=I
Q.E.D.

Using this, we show that the directional derivative of the map A ↦ A − 1 A\mapsto A^{-1} AA1 as the point A A A in the direction V V V is A − 1 V A − 1 A^{-1} V A^{-1} A1VA1. Choose V V V with small enough matrix norm, then
( A + V ) − 1 = ( A ( I + A − 1 V ) ) − 1 = ( I + A − 1 V ) − 1 A − 1 (A+V)^{-1} = (A(I + A^{-1}V))^{-1} = (I +A^{-1}V)^{-1} A^{-1} (A+V)1=(A(I+A1V))1=(I+A1V)1A1

= ∑ n = 0 ∞ ( − 1 ) n A − n V n A − 1 =\sum_{n=0}^\infty(-1)^nA^{-n}V^nA^{-1} =n=0(1)nAnVnA1

Thus, the 1 t h 1^{th} 1th order term of this equation is A − 1 V A − 1 A^{-1} V A^{-1} A1VA1, exactly as we expected.

The next important computation is the directional derivative of det ⁡ \det det. We show that ∂ i j det ⁡ m = m i j ⋆ \partial_{ij} \det m = m^\star_{ij} ijdetm=mij, where m i j ⋆ m^\star_{ij} mij denotes the ( i , j ) (i,j) (i,j)-adjacent matrix of m m m, i.e. to delete the i t h i^{th} ith row and j t h j^{th} jth column of m m m. To me, the prove is quite elegant, for it is telling that the symmetry (instead of finiteness of vector space) of det ⁡ \det det must let the deduction stop somewhere.

Proposition: If m ∈ M ( n , R ) m\in M(n, \R) mM(n,R), then ∂ i j det ⁡ m = m i j ⋆ \partial_{ij} \det m = m^\star_{ij} ijdetm=mij.

proof.

Using the identity det ⁡ m = ∑ j = 1 n m i j det ⁡ m i j ⋆ \det m = \sum_{j=1}^n m_{ij} \det m^\star_{ij} detm=j=1nmijdetmij for any chosen i i i, we have
∂ i j det ⁡ m = det ⁡ m i j ⋆ + ∑ k ≠ j m i k ∂ i j det ⁡ m i k ⋆ = det ⁡ m i j ⋆ + ∑ k ≠ j m i k ∂ i j ( ∑ l ≠ i m l j det ⁡ m i l , k j ⋆ ) \begin{array}{lll} \partial_{ij} \det m &=& \det m^\star_{ij} + \sum_{k\neq j} m_{ik} \partial_{ij} \det m^\star_{ik}\\ &=&\det m^\star_{ij} + \sum_{k\neq j} m_{ik} \partial_{ij}(\sum_{l\neq i} m_{lj} \det m^\star_{il, kj}) \end{array} ijdetm==detmij+k=jmikijdetmikdetmij+k=jmikij(l=imljdetmil,kj)
where m i l , k j ⋆ m^\star_{il, kj} mil,kj denote subbing matrix of m m m by deleting the i , l i,l i,l rows and k , j k,j k,j columns. Observing the m l j m_{lj} mlj in the above equation cannot be m i j m_{ij} mij since l ≠ i l\neq i l=i, we obtain
det ⁡ m i j ⋆ + ∑ l ≠ i , k ≠ j m i k m l j ∂ i j det ⁡ m i l , k j ⋆ \det m^\star_{ij} + \sum_{l\neq i, k\neq j} m_{ik}m_{lj} \partial_{ij} \det m^\star_{il, kj} detmij+l=i,k=jmikmljijdetmil,kj
But ∂ i j det ⁡ m i l , k j ⋆ = 0 \partial_{ij} \det m^\star_{il, kj} = 0 ijdetmil,kj=0 since the i t h i^{th} ith row and the j t h j^{th} jth column have been deleted, hence the only item left is det ⁡ m i j ⋆ \det m^\star_{ij} detmij, which is exactly what we expected.

Q.E.D.

From this we obtain the differential of det ⁡ \det det:
d ( det ⁡ ) ∣ m = det ⁡ m ∑ i , j ( m − 1 ) i j d m i j = det ⁡ m  tr ( m − 1 d m ) d(\det)|_m = \det m \sum_{i,j} (m^{-1})_{ij} d m_{ij} = \det m \text{ tr}(m^{-1}dm) d(det)m=detmi,j(m1)ijdmij=detm tr(m1dm)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值