度量学习、细粒度识别相关论文阅读笔记(三)—— Destruction and Construction Learning for Fine-grained Image Recognition

本文介绍了细粒度图像识别的研究,重点探讨了Destruction and Construction Learning (DCL)方法。DCL通过区域混淆机制破坏图像以强调局部细节,再利用对抗性损失恢复图像。接着,区域对齐网络被用来恢复区域分布,同时捕捉局部区域的语义相关性。这种方法无需额外先验知识,能自动检测判别性区域,提高识别准确性。
摘要由CSDN通过智能技术生成

度量学习、细粒度识别相关论文阅读笔记(三)—— Destruction and Construction Learning for Fine-grained Image Recognition

破坏和构建学习 区域混淆机制 对抗性损失 区域对齐网络

除了标准分类骨干网络之外,引入了DCL分支来自动学习判别区域。
首先破坏输入图像以强调有判别性的局部细节,然后对局部区域之间的语义相关性建模以重建图像。
在这里插入图片描述

破坏:区域混淆机制 对抗性损失
区域混淆机制:

将输入图像划分为局部图块然后随机打乱
在这里插入图片描述
细粒度识别中局部细节比全局结构更重要,因为来自不同类别的图像通常具有相同的全局结构,仅在局部细节上不同。
图像中的局部区域被打乱,就会忽略对精细识别不重要的无关区域,并将迫使网络关注具有判别性的局部区域。

对抗性损失:

为了抵消区域混淆机制引入的视觉噪声,使用对抗性损失来区分原始图像和被破坏的图像。

构建:区域对齐网络
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值