度量学习、细粒度识别相关论文阅读笔记(三)—— Destruction and Construction Learning for Fine-grained Image Recognition
破坏和构建学习 区域混淆机制 对抗性损失 区域对齐网络
除了标准分类骨干网络之外,引入了DCL分支来自动学习判别区域。
首先破坏输入图像以强调有判别性的局部细节,然后对局部区域之间的语义相关性建模以重建图像。
破坏:区域混淆机制 对抗性损失
区域混淆机制:
将输入图像划分为局部图块然后随机打乱
细粒度识别中局部细节比全局结构更重要,因为来自不同类别的图像通常具有相同的全局结构,仅在局部细节上不同。
图像中的局部区域被打乱,就会忽略对精细识别不重要的无关区域,并将迫使网络关注具有判别性的局部区域。
对抗性损失:
为了抵消区域混淆机制引入的视觉噪声,使用对抗性损失来区分原始图像和被破坏的图像。