前言
请先看第一章的内容和前言~由于这本书的图实在太多(当然也是其优点),我上传不过来,所以我提到的重要的图请参考英文原书!
Chapter2 微分形式初步 An Introduction to Differential Forms
坐标函数 Coordinate Functions
一个很必要/重要的思想:一个点是实际存在的,这个点的表示虽然依赖于坐标,但是它本身不依赖于坐标系存在。而流形是点的集合,不是向量的集合,这一点很重要,我们会用 p = ( x 1 , x 2 , . . . , x n ) p=(x_1,x_2,...,x_n) p=(x1,x2,...,xn)表示点,而用 v = [ x 1 x 2 . . . x n ] v=\begin{bmatrix} x_1 \\x_2 \\...\\x_n \end{bmatrix} v= x1x2...xn 表示向量;一定要区分这一点,因为虽然本书大部分时间都在处理 R n R^n Rn上的对象/流形,看上去跟一般的线性空间很相似,但是实际上大部分流形都是没有线性结构的。
一些术语:(实值)函数(functions)是指从流形 R n R^n Rn到 R R R的一个映射;泛函(functionals)是指从向量空间 R n R^n Rn到 R R R的一个映射;变换(transformation)是指从向量空间到向量空间的一个映射。
定义:从
R
n
→
R
R^n\to R
Rn→R的一个函数称为坐标函数,其定义域是点的坐标
以二维空间举例,设点
p
∈
R
2
p\in R^2
p∈R2且其坐标在直角坐标系下给定,定义其坐标函数为
x
:
R
2
→
R
p
↦
x
(
p
)
\begin{align}\nonumber x:R^2 &\to R\\ p &\mapsto x(p)\nonumber \end{align}
x:R2p→R↦x(p)
其中
x
(
p
)
=
x
p
x(p)=x_p
x(p)=xp,
x
p
x_p
xp表示
p
p
p的
x
x
x轴的坐标,简单说就是去除第一个坐标作为结果,例如
x
(
p
)
=
x
(
(
3
,
5
)
)
=
3
x(p)=x((3,5))=3
x(p)=x((3,5))=3,同一个点,在不同坐标系下的表示是不一样的,例如上面这个点在极坐标系下的表示
p
=
(
r
(
p
)
,
θ
(
p
)
)
=
(
r
(
x
(
p
)
,
y
(
p
)
)
,
θ
(
x
(
p
)
,
y
(
p
)
)
)
=
(
x
(
p
)
2
+
y
(
p
)
2
,
a
r
c
t
a
n
(
y
(
p
)
x
(
p
)
)
)
=
(
3
2
+
5
2
,
a
r
c
t
a
n
(
5
3
)
)
=
(
34
,
a
r
c
t
a
n
(
5
3
)
)
≈
(
5.831
,
59.036
)
\begin{aligned} p &= (r(p),\theta (p)) \\ &= (r(x(p),y(p)),\theta(x(p),y(p)))\\ &= (\sqrt{x(p)^2+y(p)^2},arctan(\frac{y(p)}{x(p)}))\\ &=(\sqrt{3^2+5^2},arctan(\frac{5}{3}))\\ &=(\sqrt{34},arctan(\frac{5}{3}))\\ &\approx(5.831,59.036) \end{aligned}
p=(r(p),θ(p))=(r(x(p),y(p)),θ(x(p),y(p)))=(x(p)2+y(p)2,arctan(x(p)y(p)))=(32+52,arctan(35))=(34,arctan(35))≈(5.831,59.036)
注意,符号
x
,
p
,
r
,
θ
x,p,r,\theta
x,p,r,θ既可以是坐标函数,也可以坐标函数的值,具体要根据上下文表达。
切空间和向量场 Tangent Space and Vector Fields
对流形的初步感受
首先,我们需要对流形有一个粗浅的感性的认知,以最经典的三个流形为例。
S
1
S^1
S1:一个圆
S
2
S^2
S2:一个球
T
T
T:一个环(甜甜圈)
书上P37有图,非常形象。
我们说流形的局部是一个欧氏空间,指的是取出流形上非常非常小的一个部分,我们会发现这个部分长得很像
R
n
R^n
Rn。比如说一个圆,取出一小部分,就是一个弧,这个弧的一小部分,很小很小的时候,就跟一条直线一样了,也就是
R
1
R^1
R1。同样地,我们取一个球的表面,一开始是一个曲面,但是曲面很小的时候,就近似成一个平面了,也就是
R
2
R^2
R2. 这一点可以在Fig2.8看的很清楚.
切空间
对于一个流形,其上面的某一个点会有切向量,比如 S 1 S^1 S1上某点的切向量就是一条线,而 S 2 S^2 S2的切向量会组成一个平面.
书P39的图很形象.
因此,我们可以发现某一个点 p ∈ M p\in M p∈M可以做出一个空间,这个空间内的元素是该点在 M M M上切向量,并且对于一些性质比较好的点而言,这个空间的是一个线性空间,且维数跟 M M M一样,由此我们有下列结论:
结论: 流形 M M M在其点 p p p处的切空间(tangent space)是一个向量空间 R n R^n Rn,其中的元素是以 p p p为起点的一个向量,记作 T p M T_pM TpM或 T P ( M ) T_P(M) TP(M).
从现在开始,我们谈论向量时,都会加上下标来表明其起点是谁,例如 v p v_p vp表示一个起点为 p p p的向量,很自然的有 v p ∈ T p M v_p\in T_pM vp∈TpM.
由于 T p M T_pM TpM在 M M M是欧氏空间时,本身也是一个相同维数的欧氏空间,所以我们也可以这样认为:切空间 T p M T_pM TpM就是另一个附着于某一个点 p p p的与 M M M独立的有相同维数的欧氏空间.实际上, T p M T_pM TpM除了是以 p p p作为原点之外,和一般的欧氏空间没有任何区别(同构意义上).
切丛(tangent bundle):将流形 M M M和其每一点 p p p上的切空间 T p M T_pM TpM称为切丛.
向量场(vector field):将 R n → R n R^n\to R^n Rn→Rn中的值域称为一个向量场.
也就是说,我们对于 M M M上每一点 p p p都根据一个映射确定了一个向量 v v v,这些 v v v的集合就是一个向量场.我们说一个向量场是光滑(smooth)的,如果我们能在流形上找到一些曲线使得向量场的每一个向量都跟这些曲线相切,而这些曲线被称为积分曲线(integral curves),研究这些曲线是微分方程的中心问题.
根据定义,
p
p
p点有一个切空间
T
p
M
T_pM
TpM可以"盖住"整个
R
n
R^n
Rn里的元素,而同时
p
p
p点还可以被映射到一个向量场中,得到
v
v
v,那么这个
v
v
v肯定就在
T
p
M
T_pM
TpM里,因此给定一个向量场,实际上就是给
M
M
M的每一个切空间了一个元素,这被称为切丛的一个截面(section).
书P43有非常形象的图.
方向导数 Directional Derivatives
考虑 f : R → R f:R\to R f:R→R,这时作为自变量的 p p p只有两个方向可以移动(左或者右),此时沿着作为定义域的流形的切向量 v p , w p ∈ T p R 1 v_p,w_p\in T_pR^1 vp,wp∈TpR1只有两个,一个朝左一个朝右,见Fig.2.21.
考虑另一个 f : R 2 → R f:R^2\to R f:R2→R,这时作为变量的向量 p = ( x , y ) p=(x,y) p=(x,y)就有无数个方向可以移动了,考虑某个方向向量(这里暂时把这个向量放在流形中考虑,而不是切空间中) v p = [ a b ] ( x , y ) v_p= \begin{bmatrix} a\\b \end{bmatrix} _{(x,y)} vp=[ab](x,y),如果我们让沿着 v p v_p vp移动,那么其对应的函数值也会发生变化,Fig.2.22很好的展示了函数值的这种变化. 我们会注意到这种变化不是均匀的,换句话说,自变量沿着不同的方向走同样的距离,其函数值的变化是不一样的,我们想刻画这种关系,这就引出了方向导数的概念.
设
p
=
(
x
0
,
y
0
)
p=(x_0,y_0)
p=(x0,y0),首先我们有
f
(
p
)
=
f
(
x
0
,
y
0
)
f(p)=f(x_0,y_0)
f(p)=f(x0,y0)
而
p
p
p点沿着
v
p
=
[
a
b
]
(
x
0
,
y
0
)
v_p= \begin{bmatrix} a\\b \end{bmatrix} _{(x_0,y_0)}
vp=[ab](x0,y0)方向前进距离
h
h
h时会到达新的点
q
=
p
+
h
v
p
=
(
x
0
+
h
a
,
y
0
+
h
b
)
q=p+hv_p=(x_0+ha,y_0+hb)
q=p+hvp=(x0+ha,y0+hb)
此时
f
(
q
)
=
f
(
x
0
+
h
a
,
y
0
+
h
b
)
f(q)=f(x_0+ha,y_0+hb)
f(q)=f(x0+ha,y0+hb),其变化量为
f
(
x
0
+
h
a
,
y
0
+
h
b
)
−
f
(
x
0
,
y
0
)
f(x_0+ha,y_0+hb)-f(x_0,y_0)
f(x0+ha,y0+hb)−f(x0,y0)
定义:设
f
:
R
2
→
R
f:R^2\to R
f:R2→R在点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)沿着单位向量
u
=
[
a
b
]
u=\begin{bmatrix}a\\b\end{bmatrix}
u=[ab]的 方向导数(directional derivatives)是如下这个极限(如果极限存在的话)
D
u
f
(
x
0
,
y
0
)
:
=
lim
t
→
0
f
(
x
0
+
t
a
,
y
0
+
t
b
)
−
f
(
x
0
,
y
0
)
t
D_uf(x_0,y_0):=\lim_{t\to 0}\frac{f(x_0+ta,y_0+tb)-f(x_0,y_0)}{t}
Duf(x0,y0):=t→0limtf(x0+ta,y0+tb)−f(x0,y0)
上述的定义式的右侧实际上也等于
lim
t
→
0
f
(
x
0
+
t
a
,
y
0
+
t
b
)
−
f
(
x
0
,
y
0
)
t
=
d
d
t
(
f
(
p
+
t
u
)
)
∣
t
=
0
\underset{{t\to 0}}\lim \frac{f(x_0+ta,y_0+tb)-f(x_0,y_0)}{t}= \frac{d}{dt} \big(f(p+tu)\big) \Big\vert _{t=0}
t→0limtf(x0+ta,y0+tb)−f(x0,y0)=dtd(f(p+tu))
t=0
定理:设
f
:
R
2
→
R
f:R^2\to R
f:R2→R在点
(
x
,
y
)
(x,y)
(x,y)是可微的,那么
f
f
f对于任何以单位向量
u
=
[
a
b
]
u= \begin{bmatrix} a\\b \end{bmatrix}
u=[ab]为方向的方向导数都存在且
D
u
f
(
x
,
y
)
=
∂
f
∂
x
(
x
,
y
)
⋅
a
+
∂
f
∂
y
(
x
,
y
)
⋅
b
D_uf(x,y)= \frac{\partial f}{\partial x} (x,y) \cdot a + \frac{\partial f}{\partial y} (x,y) \cdot b
Duf(x,y)=∂x∂f(x,y)⋅a+∂y∂f(x,y)⋅b
证明略(参考P46)
在书的P47到P49论述了为什么要求方向向量一定得是一个单位向量,简单说有两个好处
- 公式简单,而且能够表示微分
- 除了表示微分外,还表示切线的斜率
现在我们要扔掉这个限制条件,把方向向量扩大到任何以 p p p为起点的向量,此时得到的方向导数在几何上就只能表示切线的"变化量".
定义:设
f
:
R
n
→
R
f:R^n\to R
f:Rn→R是一个定义在流形
R
n
R^n
Rn上的实值函数,并令
v
p
∈
T
p
(
R
n
)
v_p\in T_p(R^n)
vp∈Tp(Rn)表示流形的一个切向量,那么称实数
v
p
[
f
]
:
=
d
d
t
(
f
(
p
+
t
u
)
)
∣
t
=
0
v_p[f]:= \frac{d}{dt} \big(f(p+tu)\big) \Big\vert _{t=0}
vp[f]:=dtd(f(p+tu))
t=0
是
f
f
f对于
v
p
v_p
vp的方向导数(若实数存在).
注意到: v p [ f ] v_p[f] vp[f]是一个映射,其自变量是函数,而结果是实数,我们称这样的映射为算子(operator),本例中,我们可以说向量 v p v_p vp是函数 f f f的一个算子.
假设我们有函数
f
:
R
3
→
R
f:R^3\to R
f:R3→R和一个起点在
p
=
(
p
1
,
p
2
,
p
3
)
p=(p_1,p_2,p_3)
p=(p1,p2,p3)的向量
v
p
=
[
v
1
v
2
v
3
]
∈
T
p
(
R
3
)
v_p= \begin{bmatrix} v_1\\v_2\\v_3 \end{bmatrix} \in T_p(R^3)
vp=
v1v2v3
∈Tp(R3),我们想找到
v
p
[
f
]
v_p[f]
vp[f]的表达式.
…(过程略去,参考P50)结果是
v
p
[
f
]
=
∑
i
=
1
3
v
i
⋅
∂
f
∂
x
i
∣
p
v_p[f]= \sum_{i=1}^3 v_i \cdot \frac{\partial f}{\partial x_i} \Big\vert _p
vp[f]=i=1∑3vi⋅∂xi∂f
p
其中
x
i
=
x
i
(
t
)
=
p
i
+
t
v
i
x_i=x_i(t)=p_i+tv_i
xi=xi(t)=pi+tvi(即
f
f
f的第一个参数的整体).
特别的,我们看看
R
3
R^3
R3的一组标准坐标基
e
1
=
[
1
0
0
]
,
e
2
=
[
0
1
0
]
,
e
3
=
[
0
0
1
]
e_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , e_2=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , e_3=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
e1=
100
,e2=
010
,e3=
001
作为算子的时候的表达式(这时不管
p
p
p在哪答案都是一样的,大概是因为
p
p
p点此时和欧式空间里的原点重合了吧)
容易验证,
e
1
[
f
]
=
∂
∂
x
1
(
f
)
,
e
2
[
f
]
=
∂
∂
x
2
(
f
)
,
e
3
[
f
]
=
∂
∂
x
3
(
f
)
e_1[f]=\frac{\partial}{\partial x_1}\big(f\big), e_2[f]=\frac{\partial}{\partial x_2}\big(f\big), e_3[f]=\frac{\partial}{\partial x_3}\big(f\big)
e1[f]=∂x1∂(f),e2[f]=∂x2∂(f),e3[f]=∂x3∂(f)
以下是本书最为重要的观点之一:
欧式空间下的向量 e i e_i ei可以认为是偏微分算子 ∂ ∂ x i \frac{\partial}{\partial x_i} ∂xi∂
可以验证该方向导数满足线性性和莱布尼兹公式,也就是说
设
a
,
b
∈
R
,
p
∈
R
3
,
v
p
,
w
p
∈
T
p
(
R
3
)
,
f
,
g
:
R
3
→
R
a,b\in R, p\in R^3, v_p,w_p\in T_p(R^3), f,g:R^3\to R
a,b∈R,p∈R3,vp,wp∈Tp(R3),f,g:R3→R那么有如下等式成立
- ( a v p + b w p ) [ f ] = a v p [ f ] + b w p [ f ] (av_p+bw_p)[f]=av_p[f]+bw_p[f] (avp+bwp)[f]=avp[f]+bwp[f]
- v p [ a f + b g ] = a v p [ f ] + b v p [ f ] v_p[af+bg]=av_p[f]+bv_p[f] vp[af+bg]=avp[f]+bvp[f]
-
v
p
[
f
g
]
=
v
p
[
f
]
⋅
g
(
p
)
+
f
(
p
)
⋅
v
p
[
g
]
v_p[fg]=v_p[f]\cdot g(p)+f(p)\cdot v_p[g]
vp[fg]=vp[f]⋅g(p)+f(p)⋅vp[g]
综上,我们最后得到一个等式
v p = v 1 ∂ ∂ x 1 ∣ p + v 2 ∂ ∂ x 2 ∣ p + v 3 ∂ ∂ x 3 ∣ p v_p= v_1\frac{\partial}{\partial x_1}\Big\vert _p+ v_2\frac{\partial}{\partial x_2}\Big\vert _p+ v_3\frac{\partial}{\partial x_3}\Big\vert _p vp=v1∂x1∂ p+v2∂x2∂ p+v3∂x3∂ p
微分1-形式 Differential One-Forms
定义与批注
我们已经知道 T p ( R n ) T_p(R^n) Tp(Rn)是一个线性空间,那么它自然有其对偶空间,我们记作 T p ∗ ( R n ) T_p^*(R^n) Tp∗(Rn),接下来我们就来研究这个对偶空间.
定义:流形
R
n
R^n
Rn上的一个微分1-形式
α
\alpha
α是
R
n
R^n
Rn上的一族切向量的线性泛函. 即在每一个
p
∈
R
n
p\in R^n
p∈Rn有
α
:
T
p
(
R
n
)
→
R
\alpha : T_p(R^n)\to R
α:Tp(Rn)→R且对于所有的
v
p
,
w
p
∈
T
p
(
R
n
)
v_p,w_p\in T_p(R^n)
vp,wp∈Tp(Rn)和
c
∈
R
c\in R
c∈R有
α
(
v
p
+
w
p
)
=
α
(
v
p
)
+
α
(
w
p
)
α
(
c
v
p
)
=
c
α
(
v
p
)
\begin{aligned} \alpha(v_p+w_p)&=\alpha(v_p)+\alpha(w_p) \\ \alpha(cv_p)&=c\alpha(v_p) \end{aligned}
α(vp+wp)α(cvp)=α(vp)+α(wp)=cα(vp)
关于这个定义有三点需要指出:
- α ∈ T p ∗ ( R ) \alpha \in T^*_p(R) α∈Tp∗(R)是一个线性泛函,而 T p ∗ ( R ) T^*_p(R) Tp∗(R)是 T p ( R ) T_p(R) Tp(R)的对偶空间.
- 虽然 α \alpha α的作用元素是一个切向量,但我们依然称 α \alpha α是流形 R n R^n Rn上的一个微分1-形式,原因在于多数情况 α \alpha α与所选取的基点 p p p有关,也就是说实际上 α \alpha α是一族映射,而若要指定是某一点的微分形式则需要使用 α ( p ) \alpha(p) α(p)或者 α p \alpha_p αp这个符号。
- 术语微分1-形式里的“1”是表明映射 α \alpha α只“吸收”一个切向量(以一个切向量作为参数),而之后我们要谈的微分2-形式,微分3-形式以及一般意义上的微分k-形式会分别“吸收”2个,3个,k个切向量;术语里的“微分”是指这种映射具有跟“外微分”很相似的性质,关于“外微分”之后会有介绍;最后术语里的“形式”是一个很常见的词,用于修饰具有某种符号规律的对象。
余切空间
由上可知,所有的微分1-形式构成了一个线性空间(假设固定基点为 p p p,后不再说明;实际上我们只要选定一个 p p p就自然确定了整个微分1-形式,去掉 p p p是为了更具一般性,但实际计算的时候还是要加上去),而且这个线性空间正好是 T p ( R n ) T_p(R^n) Tp(Rn)的对偶空间,如果令 { ∂ ∂ x 1 , ∂ ∂ x 2 , ∂ ∂ x 3 } \{ \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3} \} {∂x1∂,∂x2∂,∂x3∂}作为 T p ( R n ) T_p(R^n) Tp(Rn)的基,设其对偶基为 { d x 1 , d x 2 , d x 3 } \{ dx_1,dx_2,dx_3 \} {dx1,dx2,dx3}.
我们看到对偶基的符号跟微分的符号很像,实际上这俩有千丝万缕的关系,后面会说.
当我们固定一个点 p p p作为基点后,称对偶空间 T p ∗ ( R n ) T_p^*(R^n) Tp∗(Rn)是 p p p点处的余切空间(cotangent space).
既然已经有了对偶基,那么任何一个微分1-形式都可以用这组对偶基表示了,也就是说任何一个微分1-形式
α
\alpha
α都可以表示成
α
=
a
d
x
1
+
b
d
x
2
+
c
d
x
3
\alpha=adx_1+bdx_2+cdx_3
α=adx1+bdx2+cdx3其中
a
,
b
,
c
∈
R
a,b,c\in R
a,b,c∈R,例如
α
=
5
d
x
1
−
4
d
x
2
+
9
2
d
x
3
\alpha=5dx_1-4dx_2+\frac{9}{2}dx_3
α=5dx1−4dx2+29dx3等等,同时也可以将其记为一个行向量
[
5
−
4
9
2
]
\begin{bmatrix} 5 & -4 & \frac{9}{2} \end{bmatrix}
[5−429].
根据第一章的“背景知识”我们已经知道
d
x
i
(
∂
∂
x
j
)
=
δ
i
j
dx_i\big( \frac{\partial}{\partial x_j}\big)=\delta_{ij}
dxi(∂xj∂)=δij,那么假设现在有一个列向量
[
−
1
3
−
4
]
=
−
∂
∂
x
1
+
3
∂
∂
x
2
−
4
∂
∂
x
3
\begin{bmatrix} -1 \\ 3 \\ -4 \end{bmatrix}= -\frac{\partial}{\partial x_1} +3\frac{\partial}{\partial x_2} -4\frac{\partial}{\partial x_3}
−13−4
=−∂x1∂+3∂x2∂−4∂x3∂,我们用
d
x
1
,
d
x
2
,
d
x
3
dx_1,dx_2,dx_3
dx1,dx2,dx3分别去映射他们,其结果如下
d
x
1
(
−
∂
∂
x
1
+
3
∂
∂
x
2
−
4
∂
∂
x
3
)
=
d
x
1
(
−
∂
∂
x
1
)
+
d
x
1
(
3
∂
∂
x
2
)
+
d
x
1
(
−
4
∂
∂
x
3
)
=
−
d
x
1
(
∂
∂
x
1
)
+
3
d
x
1
(
∂
∂
x
2
)
−
4
d
x
1
(
∂
∂
x
3
)
=
−
1
\begin{aligned} dx_1(-\frac{\partial}{\partial x_1} +3\frac{\partial}{\partial x_2} -4\frac{\partial}{\partial x_3}) &= dx_1(-\frac{\partial}{\partial x_1})+dx_1(3\frac{\partial}{\partial x_2})+dx_1(-4\frac{\partial}{\partial x_3}) \\ &= -dx_1(\frac{\partial}{\partial x_1})+3dx_1(\frac{\partial}{\partial x_2})-4dx_1(\frac{\partial}{\partial x_3}) \\ &= -1 \end{aligned}
dx1(−∂x1∂+3∂x2∂−4∂x3∂)=dx1(−∂x1∂)+dx1(3∂x2∂)+dx1(−4∂x3∂)=−dx1(∂x1∂)+3dx1(∂x2∂)−4dx1(∂x3∂)=−1
d
x
2
(
−
∂
∂
x
1
+
3
∂
∂
x
2
−
4
∂
∂
x
3
)
=
d
x
2
(
−
∂
∂
x
1
)
+
d
x
2
(
3
∂
∂
x
2
)
+
d
x
2
(
−
4
∂
∂
x
3
)
=
−
d
x
2
(
∂
∂
x
1
)
+
3
d
x
2
(
∂
∂
x
2
)
−
4
d
x
2
(
∂
∂
x
3
)
=
3
\begin{aligned} dx_2(-\frac{\partial}{\partial x_1} +3\frac{\partial}{\partial x_2} -4\frac{\partial}{\partial x_3}) &= dx_2(-\frac{\partial}{\partial x_1})+dx_2(3\frac{\partial}{\partial x_2})+dx_2(-4\frac{\partial}{\partial x_3}) \\ &= -dx_2(\frac{\partial}{\partial x_1})+3dx_2(\frac{\partial}{\partial x_2})-4dx_2(\frac{\partial}{\partial x_3}) \\ &= 3 \end{aligned}
dx2(−∂x1∂+3∂x2∂−4∂x3∂)=dx2(−∂x1∂)+dx2(3∂x2∂)+dx2(−4∂x3∂)=−dx2(∂x1∂)+3dx2(∂x2∂)−4dx2(∂x3∂)=3
d
x
3
(
−
∂
∂
x
1
+
3
∂
∂
x
2
−
4
∂
∂
x
3
)
=
d
x
3
(
−
∂
∂
x
1
)
+
d
x
3
(
3
∂
∂
x
2
)
+
d
x
3
(
−
4
∂
∂
x
3
)
=
−
d
x
3
(
∂
∂
x
1
)
+
3
d
x
3
(
∂
∂
x
2
)
−
4
d
x
3
(
∂
∂
x
3
)
=
−
4
\begin{aligned} dx_3(-\frac{\partial}{\partial x_1} +3\frac{\partial}{\partial x_2} -4\frac{\partial}{\partial x_3}) &= dx_3(-\frac{\partial}{\partial x_1})+dx_3(3\frac{\partial}{\partial x_2})+dx_3(-4\frac{\partial}{\partial x_3}) \\ &= -dx_3(\frac{\partial}{\partial x_1})+3dx_3(\frac{\partial}{\partial x_2})-4dx_3(\frac{\partial}{\partial x_3}) \\ &= -4 \end{aligned}
dx3(−∂x1∂+3∂x2∂−4∂x3∂)=dx3(−∂x1∂)+dx3(3∂x2∂)+dx3(−4∂x3∂)=−dx3(∂x1∂)+3dx3(∂x2∂)−4dx3(∂x3∂)=−4
由上看出,微分1-形式
d
x
1
,
d
x
2
,
d
x
3
dx_1,dx_2,dx_3
dx1,dx2,dx3本质上是找到了
p
p
p点切空间上的某个向量的分量数值,也就是一个“投影”操作。而
α
=
a
d
x
1
+
b
d
x
2
+
c
d
x
3
\alpha=adx_1+bdx_2+cdx_3
α=adx1+bdx2+cdx3实际上就是把向量分解到各个坐标轴(切空间意义下)上,然后乘上一个因子
a
,
b
,
c
a,b,c
a,b,c最后再加起来,这个角度来看
d
x
1
,
d
x
2
,
d
x
3
dx_1,dx_2,dx_3
dx1,dx2,dx3类似于坐标函数,书P56 Fig2.29展示了这一过程.
我们也常把 d x 1 , d x 2 , d x 3 dx_1,dx_2,dx_3 dx1,dx2,dx3记作 d x , d y , d z dx,dy,dz dx,dy,dz
而如果把一个微分1-形式写成行向量的形式,我们通常称之为余向量(co-vector),寓意为余切空间里的向量.
最后强调一下,微分1-形式更像是一个1-形式域,因为它一定要给定一个基点 p p p才能确定下来映射的形式,然后再作用于 T p ( M ) T_p(M) Tp(M)上的元素得到一个实数,举个例子:
给定三个
R
3
R^3
R3上的实值函数如下
f
(
x
,
y
,
z
)
=
x
2
y
g
(
x
,
y
,
z
)
=
x
2
+
y
z
h
(
x
,
y
,
z
)
=
x
+
y
+
3
f(x,y,z)=x^2y \\ g(x,y,z)=\frac{x}{2}+yz \\ h(x,y,z)=x+y+3
f(x,y,z)=x2yg(x,y,z)=2x+yzh(x,y,z)=x+y+3
而对于每一个
p
∈
R
3
p\in R^3
p∈R3有
M
=
R
3
M=R^3
M=R3上的1-形式
ϕ
=
ϕ
(
x
,
y
,
z
)
=
f
(
x
,
y
,
z
)
d
x
+
g
(
x
,
y
,
z
)
d
y
+
h
(
x
,
y
,
z
)
d
z
\phi=\phi_{(x,y,z)}=f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz
ϕ=ϕ(x,y,z)=f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz
那么,对于点
p
=
(
1
,
2
,
3
)
p=(1,2,3)
p=(1,2,3)而言,1-形式
ϕ
(
1
,
2
,
3
)
\phi_{(1,2,3)}
ϕ(1,2,3)的表达式为
ϕ
(
1
,
2
,
3
)
=
f
(
1
,
2
,
3
)
d
x
+
g
(
1
,
2
,
3
)
d
y
+
h
(
1
,
2
,
3
)
d
z
=
2
d
x
+
13
2
d
y
+
6
d
z
\begin{aligned} \phi_{(1,2,3)} &=f(1,2,3)dx+g(1,2,3)dy+h(1,2,3)dz \\ &=2dx+\frac{13}{2}dy+6dz \end{aligned}
ϕ(1,2,3)=f(1,2,3)dx+g(1,2,3)dy+h(1,2,3)dz=2dx+213dy+6dz
如果再给定一个以 p = ( 1 , 2 , 3 ) p=(1,2,3) p=(1,2,3)为起点的向量 v p = [ 2 − 1 − 2 ] p v_p=\begin{bmatrix}2\\-1\\-2 \end{bmatrix}_p vp= 2−1−2 p,那么我们有
ϕ p ( v p ) = ( 2 d x + 13 2 d y + 6 d z ) ( 2 ∂ ∂ x − 1 ∂ ∂ y − 2 ∂ ∂ z ) = 2 d x ( 2 ∂ ∂ x − 1 ∂ ∂ y − 2 ∂ ∂ z ) + 13 2 d y ( 2 ∂ ∂ x − 1 ∂ ∂ y − 2 ∂ ∂ z ) + 6 d z ( 2 ∂ ∂ x − 1 ∂ ∂ y − 2 ∂ ∂ z ) = [ 2 , 13 2 , 6 ] ( 1 , 2 , 3 ) [ 2 − 1 − 2 ] ( 1 , 2 , 3 ) = − 29 2 \begin{aligned} \phi_p(v_p)&= (2dx+\frac{13}{2}dy+6dz) (2\frac{\partial}{\partial x}-1\frac{\partial}{\partial y}-2\frac{\partial}{\partial z})\\ &=2dx(2\frac{\partial}{\partial x}-1\frac{\partial}{\partial y}-2\frac{\partial}{\partial z})+\frac{13}{2}dy(2\frac{\partial}{\partial x}-1\frac{\partial}{\partial y}-2\frac{\partial}{\partial z})+6dz(2\frac{\partial}{\partial x}-1\frac{\partial}{\partial y}-2\frac{\partial}{\partial z})\\ &=\begin{bmatrix} 2,\frac{13}{2},6\end{bmatrix}_{(1,2,3)} \begin{bmatrix} 2\\-1\\-2\end{bmatrix}_{(1,2,3)} \\&=\frac{-29}{2} \end{aligned} ϕp(vp)=(2dx+213dy+6dz)(2∂x∂−1∂y∂−2∂z∂)=2dx(2∂x∂−1∂y∂−2∂z∂)+213dy(2∂x∂−1∂y∂−2∂z∂)+6dz(2∂x∂−1∂y∂−2∂z∂)=[2,213,6](1,2,3) 2−1−2 (1,2,3)=2−29
所以,我们必须先确定一个
p
p
p点才能确定
ϕ
\phi
ϕ的表达式,但如果我们没有
p
p
p点只有一个向量
v
v
v呢?那么我们实际上得到了一个一个从
M
=
R
n
→
R
M=R^n\to R
M=Rn→R的映射(但这个映射不是1-形式,因为1-形式的定义域是切空间而不是流形),如下
ϕ
(
v
)
:
R
3
→
R
p
↦
ϕ
p
(
v
p
)
\begin{aligned} \phi(v):R^3&\to R \\ p&\mapsto \phi_p(v_p) \end{aligned}
ϕ(v):R3p→R↦ϕp(vp)
举个例子,设
ϕ
(
x
,
y
,
z
)
=
f
(
x
,
y
,
z
)
d
x
+
g
(
x
,
y
,
z
)
d
y
+
h
(
x
,
y
,
z
)
d
z
\phi_{(x,y,z)}=f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz
ϕ(x,y,z)=f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz
其中
f
(
x
,
y
,
z
)
=
x
y
2
g
(
x
,
y
,
z
)
=
x
y
3
+
x
2
h
(
x
,
y
,
z
)
=
x
y
+
y
z
+
x
z
f(x,y,z)=xy^2 \\ g(x,y,z)= \frac{xy}{3}+x^2 \\ h(x,y,z)=xy+yz+xz
f(x,y,z)=xy2g(x,y,z)=3xy+x2h(x,y,z)=xy+yz+xz
而
v
p
=
[
x
x
2
y
x
z
]
p
v_p= \begin{bmatrix} x\\x^2y\\xz \end{bmatrix}_p
vp=
xx2yxz
p
那么
ϕ
(
v
)
=
[
f
,
g
,
h
]
⋅
[
v
1
v
2
v
3
]
=
x
2
y
2
+
x
3
y
2
3
+
x
4
y
+
x
2
y
z
+
x
y
z
2
+
x
2
z
2
\begin{aligned} \phi(v) &= \begin{bmatrix} f,g,h \end{bmatrix} \cdot \begin{bmatrix} v_1\\v_2\\v_3 \end{bmatrix} \\&= x^2y^2+\frac{x^3y^2}{3}+x^4y+x^2yz+xyz^2+x^2z^2 \end{aligned}
ϕ(v)=[f,g,h]⋅
v1v2v3
=x2y2+3x3y2+x4y+x2yz+xyz2+x2z2
函数的微分
最后,我们来探究微积分课程中的微分到底是什么.
定义:设
f
:
R
n
→
R
f:R^n\to R
f:Rn→R是定义在流形
R
n
R^n
Rn上的一个函数。那么函数
f
f
f的微分(differential)
d
f
df
df是指
R
n
R^n
Rn上的一个1-形式,它使得对于所有的向量
v
p
v_p
vp都有
d
f
(
v
p
)
=
v
p
[
f
]
df(v_p)=v_p[f]
df(vp)=vp[f]
换句话说,微分只是众多1-形式中的一种特殊情况,其特殊之处如下
- 由定义,等号右侧是一个方向导数,由前面小结的结论,我们得到
d f ( v p ) = v p [ f ] = ∂ f ∂ x ∣ p ⋅ v 1 + ∂ f ∂ y ∣ p ⋅ v 2 + ∂ f ∂ z ∣ p ⋅ v 3 \begin{aligned} df(v_p) &=v_p[f] \\ &=\frac{\partial f}{\partial x}\Big\vert _p\cdot v_1+\frac{\partial f}{\partial y}\Big\vert _p\cdot v_2+\frac{\partial f}{\partial z}\Big\vert _p\cdot v_3 \end{aligned} df(vp)=vp[f]=∂x∂f p⋅v1+∂y∂f p⋅v2+∂z∂f p⋅v3
可以理解成这是 d f df df的计算公式,那么如果我们令 f ( v ) = x ( v ) = v 1 f(v)=x(v)=v_1 f(v)=x(v)=v1,即直角坐标系下的坐标函数,上述公式依然成立,此时我们有
d f ( v p ) = d x ( v p ) = ∂ x ∂ x ∣ p ⋅ v 1 + ∂ x ∂ y ∣ p ⋅ v 2 + ∂ x ∂ z ∣ p ⋅ v 3 = v 1 df(v_p)=dx(v_p)=\frac{\partial x}{\partial x}\Big\vert _p\cdot v_1+\frac{\partial x}{\partial y}\Big\vert _p\cdot v_2+\frac{\partial x}{\partial z}\Big\vert _p\cdot v_3=v_1 df(vp)=dx(vp)=∂x∂x p⋅v1+∂y∂x p⋅v2+∂z∂x p⋅v3=v1
同理有 d y ( v p ) = v 2 , d z ( y p ) = v 3 dy(v_p)=v_2,dz(y_p)=v_3 dy(vp)=v2,dz(yp)=v3,并且我们可以证明下面这个恒等式
d x i ( ∂ ∂ x j ) = δ i j dx_i\big(\frac{\partial }{\partial x_j}\big)=\delta _{ij} dxi(∂xj∂)=δij
这也解释了我们选择 d x , d y , d z dx,dy,dz dx,dy,dz这三个符号作为 ∂ ∂ x , ∂ ∂ y , ∂ ∂ z \frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z} ∂x∂,∂y∂,∂z∂的对偶基的原因,因为事实上余切空间的基就是直角坐标系下的坐标函数的微分.
书P62详细解释了原因,并推到了出了微积分课程中的微分公式,如下
d f = ∂ f ∂ x ∣ p d x + ∂ f ∂ y ∣ p d y + ∂ f ∂ z ∣ p d z df=\frac{\partial f}{\partial x}\Big\vert _p dx+\frac{\partial f}{\partial y}\Big\vert _p dy+\frac{\partial f}{\partial z}\Big\vert _p dz df=∂x∂f pdx+∂y∂f pdy+∂z∂f pdz
也就是说,函数 f f f的微分是一个1-形式.
- 函数的微分是一个1-形式,从对偶空间的角度来说,自然可以用 d x 1 , d x 2 , d x 3 . . . , d x n dx_1,dx_2,dx_3...,dx_n dx1,dx2,dx3...,dxn的线性组合来表示(假设采取 e 1 , e 2 , . . . , e n e_1,e_2,...,e_n e1,e2,...,en作为切空间的基),再根据上述公式的推导和微积分课程中的求偏导的知识,线性组合的系数就是“函数 f f f对切空间下的坐标系的基/ e 1 , e 2 , e 3 e_1,e_2,e_3 e1,e2,e3求偏导”的结果。但是求偏导只是在 R n R^n Rn上有定义(目前来讲)的操作,所以更本质的说法应该是“线性组合的系数是算子 e 1 , e 2 , e 3 e_1,e_2,e_3 e1,e2,e3作用于函数 f f f的结果”,只不过刚好在 R n R^n Rn上,算子定义的映射是“求偏导”并使用了 ∂ ∂ x \frac{\partial}{\partial x} ∂x∂这个符号罢了,在其他空间中,算子定义的映射可能会不同,此时系数的计算方法也就不一样了。
- 在几何上,根据方向导数那一节的知识,我们知道某点的微分实际上刻画了从原点 p p p到终点 p + v p+v p+v的“切平面的变化量”。如P63的Fig 2.31.
最后的最后,我们来算一些具体的例子.
设
f
:
R
3
→
R
f:R^3\to R
f:R3→R且
f
(
x
,
y
,
z
)
=
x
2
y
3
z
f(x,y,z)=x^2y^3z
f(x,y,z)=x2y3z,任意一点
p
=
(
x
,
y
,
z
)
∈
R
3
p=(x,y,z)\in R^3
p=(x,y,z)∈R3,考虑
v
p
=
[
1
2
3
]
p
v_p=\begin{bmatrix} 1\\2\\3 \end{bmatrix}_p
vp=
123
p.
首先,由于
v
p
v_p
vp与
p
p
p无关,那么
d f ( v ) = v [ f ] = ( ∂ ∂ x + 2 ∂ ∂ y + 3 ∂ ∂ z ) ( x 2 y 3 z ) = ∂ ( x 2 y 3 z ) ∂ x + 2 ∂ ( x 2 y 3 z ) ∂ y + 3 ∂ ( x 2 y 3 z ) ∂ z = 2 x y 3 z + 2 ( 3 x 2 y 2 z ) + 3 ( x 2 y 3 ) = 2 x y 3 z + 6 x 2 y 2 z + 3 x 2 y 3 \begin{aligned} df(v)&=v[f]\\ &=(\frac{\partial }{\partial x}+2\frac{\partial }{\partial y}+3\frac{\partial }{\partial z})(x^2y^3z)\\ &=\frac{\partial (x^2y^3z)}{\partial x}+2\frac{\partial (x^2y^3z)}{\partial y}+3\frac{\partial (x^2y^3z)}{\partial z} \\ &=2xy^3z+2(3x^2y^2z)+3(x^2y^3)\\ &=2xy^3z+6x^2y^2z+3x^2y^3 \end{aligned} df(v)=v[f]=(∂x∂+2∂y∂+3∂z∂)(x2y3z)=∂x∂(x2y3z)+2∂y∂(x2y3z)+3∂z∂(x2y3z)=2xy3z+2(3x2y2z)+3(x2y3)=2xy3z+6x2y2z+3x2y3
如果 v p v_p vp是有关 p = ( x , y , z ) p=(x,y,z) p=(x,y,z)的函数,那么 ∂ ∂ x , ∂ ∂ y , ∂ ∂ z \frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z} ∂x∂,∂y∂,∂z∂前面就必须加上那些函数作为系数带入运算了.
此时对于给定点 p = ( − 1 , 2 , − 2 ) p=(-1,2,-2) p=(−1,2,−2)我们有
d f ( v p ) = 2 ( − 1 ) ( 2 ) 3 ( − 2 ) + 2 ( 3 ( − 1 ) 2 ( 2 ) 2 ( − 2 ) ) + 3 ( − 1 ) 2 ( 2 ) 3 = 8 df(v_p)=2(-1)(2)^3(-2)+2(3(-1)^2(2)^2(-2))+3(-1)^2(2)^3=8 df(vp)=2(−1)(2)3(−2)+2(3(−1)2(2)2(−2))+3(−1)2(2)3=8
由此归纳出以下公式(以三维为例)
设
v
=
A
(
x
,
y
,
z
)
∂
∂
x
+
B
(
x
,
y
,
z
)
∂
∂
y
+
C
(
x
,
y
,
z
)
∂
∂
z
v= A(x,y,z)\frac{\partial }{\partial x}+ B(x,y,z)\frac{\partial }{\partial y}+ C(x,y,z)\frac{\partial }{\partial z}
v=A(x,y,z)∂x∂+B(x,y,z)∂y∂+C(x,y,z)∂z∂
那么
v [ f ] ∣ p = [ A ( x , y , z ) B ( x , y , z ) C ( x , y , z ) ] [ ∂ f ∂ x ∂ f ∂ y ∂ f ∂ z ] v[f]\big\vert_p= \begin{bmatrix} A(x,y,z) & B(x,y,z) & C(x,y,z) \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial x}\\ \frac{\partial f}{\partial y}\\ \frac{\partial f}{\partial z} \end{bmatrix} v[f] p=[A(x,y,z)B(x,y,z)C(x,y,z)] ∂x∂f∂y∂f∂z∂f