【报错】HuggingFace Transformers connection issue

本文讨论了在运行Huggingface代码时遇到的ConnectionError,该错误可能是由于多种原因引起的,如缓存问题、网络连接、HTTP代理等。作者尝试了多种解决方法,包括删除缓存文件、指定下载参数、检查网络和重启机器,最终问题得到解决。建议遇到类似问题的读者尝试文中提到的所有方法,有时候简单地重启或等待一段时间也可能有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时候跑hugging face的代码,莫名其妙地会报下面这个错误:

ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on

有人说,删除cache文件就行;有人说from_pretrain的时候指定local_file或者force_download等参数;也有人说是http proxy的问题;还有人说重启机器就能解决…

笔者曾不止一次遇到过该问题,每次遇到这个问题,都是试了上述各种方法,一开始不奏效,最后莫名其妙地就解决了(我什么也没做)…

笔者得出结论:主要是因为报错信息太抽象了,导致这个connection error的原因有很多,上述提到的每一种都有可能,建议每一种都去尝试一下…有时候不妨出去撒泡尿,回来可能就恢复正常了也不一定。。

参考:

  • https://github.com/huggingface/transformers/issues/8690
  • https://github.com/huggingface/transformers/issues/10067
### HuggingFace Transformers 使用指南 #### 加载预训练模型和分词器 为了使用 HuggingFace 的 `Transformers` 库,通常会先加载一个预训练的模型及其对应的分词器。这可以通过简单的几行代码完成: ```python from transformers import BertTokenizer, BertForMaskedLM tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMaskedLM.from_pretrained('bert-base-uncased') ``` 这段代码展示了如何利用 BERT 模型进行初始化[^1]。 #### 数据准备与处理 当涉及到具体任务的数据时,比如文本分类或命名实体识别,数据需要被适当地编码成模型可以理解的形式。对于大多数 NLP 任务而言,这意味着将原始字符串转换为 token ID 列表,并可能添加特殊的标记来指示句子边界或其他结构化信息。 ```python inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") labels = tokenizer("Hello, my cat is cute", return_tensors="pt")["input_ids"] ``` 这里展示了一个例子,在这个例子中输入了一句话并将其转化为张量形式以便于后续操作[^3]。 #### 微调现有模型 如果想要针对特定领域或者更具体的下游任务改进性能,则可以选择基于现有的大型语言模型基础上做进一步的学习——即所谓的“微调”。此过程涉及调整部分参数而不是重新开始整个训练流程。 ```python outputs = model(**inputs, labels=labels) loss = outputs.loss logits = outputs.logits ``` 上述片段说明了通过提供标签来进行监督学习的方式之一;损失函数计算结果可用于反向传播更新权重值。 #### 部署推理服务 一旦有了满意的模型版本之后就可以考虑部署到生产环境中去了。Hugging Face 提供了一些工具可以帮助快速建立 RESTful API 或者 WebSocket 连接使得外部应用程序能够方便地访问这些强大的自然语言处理能力。 ```python from fastapi import FastAPI import torch app = FastAPI() @app.post("/predict/") async def predict(text: str): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() return {"prediction": model.config.id2label[predicted_class_id]} ``` 该FastAPI脚本创建了一个简易web接口用于接收待预测文本并通过已训练好的transformer模型返回类别预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值