目标监测之fast rcnn

前言

上篇文章介绍了SPP-net,它对R-CNN做了改进。但仍然存在一些缺点:计算速度慢,步骤繁琐(需要多级流水线),需要磁盘缓存特征。

fast-rcnn对此进一步进行改进,有如下优点:

  1. 比R-CNN和SPPnet具有更高的目标检测精度(mAP)。
  2. 使用多任务损失实现端到端的训练。
  3. 训练可以更新所有网络层参数。
  4. 不需要磁盘空间缓存特征。

fast-rcnn

网络架构如下:

fast R-CNN网络将整个图像和图像的一组候选框(也是通过selective rearch算法生成)作为输入(注意,这里有两个输入)。网络首先使用几个卷积层和最大池化层来处理整个图像,以产生卷积特征图。然后,对于每个候选框,RoI池化层从特征图中提取固定长度的特征向量。每个特征向量被送入一系列全连接层中,最终分支成两个同级输出层进行联合训练 :一个输出总类别数加上1个背景类别的Softmax概率估计,另一个为各类别的每一个类别输出四个实数值。每组4个值表示一个类别的检测框位置的修正。 这里多出两个新的概念:ROI池化层和联合训练

ROI池化层

ROI池化层实际上就是SPP的单层简化版,将大小不同的候选框对应的特征图提取到固定的特征向量。在文章中,VGG16网络使用H=W=7的参数,所以不管ROI pooling之前的feature map大小是多少,ROI pooling后得到的feature map大小都是H*W

联合训练

不同于之前的算法,分类和回归分别训练,导致过程繁琐。fast-rcnn采用联合训练。它指将分类和边框回归联合到一起在CNN阶段训练,主要难点是损失函数的设计。Fast-RCNN中,有两个输出层:

第一个是针对每个ROI区域的分类概率预测

第二个则是针对每个ROI区域坐标的偏移优化

0≤k≤K是多类检测的类别序号。

每个训练ROI都对应着真实类别u和边框回归目标

对于类别u预测边框为

使用多任务损失L来定义ROI上分类和边框回归的损失:

假设对于类别u,在图片中标注的真实坐标和对应的预测值理论上两者越接近越好,相应的边框损失函数为:

总结

fast-rcnn较R-CNN和SPP-net在结构上有了较大的简化,提高了检测速度和检测准确率,采用多任务损失实现端到端的训练、

存在的问题:

仍然先要使用Selective Search提取Region Proposals,没有实现真正意义上的端对端,操作也十分耗时。下节将要介绍faster-rcnn实现完全的端到端训练。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值