线性代数基本概念

线性代数基本概念

1. 矩阵基本概念

m行n列矩阵 A m × n A_{m\times n} Am×n

n阶方阵 A n × n A_{n\times n} An×n,左上角到右下角为主对角线,右上角到左下角为副对角线,位于主对角线上元素称为对角元

对角矩阵 d i a g ( a 11 , a 22 , a 33 , ⋯   , a n n ) diag(a_{11},a_{22},a_{33},\cdots,a_nn) diag(a11,a22,a33,,ann) 。还有上三角矩阵,下三角矩阵。对角元全为1的方阵为单位矩阵

若矩阵A和矩阵B的行数和列数相同,则称矩阵A和B为同型矩阵。若A和B同型并且对应元素相同,则A=B。

有方程 A x = b Ax=b Ax=b增广矩阵 [ A , b ] [A,b] [A,b]

转置矩阵 A T A^T AT ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

对称矩阵 A = A T A=A^T A=AT反称矩阵 A = − A T A=-A^T A=AT

行向量 a T a^T aT列向量 a a a

分块矩阵 用若干条横竖线将矩阵A分成许多小子矩阵

常用的分块方法

  1. A
  2. A = [ a 1 , a 2 , ⋯   , a n ] A=[a_1,a_2,\cdots,a_n] A=[a1,a2,,an]
  3. A = [ b 1 T b 2 T ⋯ b n T ] A=\begin{bmatrix}b_1^T\\b_2^T\\\cdots\\b_n^T\end{bmatrix} A=b1Tb2TbnT

A = [ A 11 A 12 A 21 A 22 ] A=\begin{bmatrix} A_{11}&A_{12}\\ A_{21}&A_{22}\\ \end{bmatrix} A=[A11A21A12A22]

矩阵初等变换

初等行变换

  • 对调行变换 r i ↔ r j r_i\leftrightarrow r_j rirj
  • 倍乘行变换
  • 倍加行变换 r j + k r i r_j+k r_i rj+kri

初等列变换初等行变换统称为初等变换。

A和B等价 A经过有限次初等变换成B,称A和B等价或者A和B相抵。

初等矩阵 由单位矩阵E经过一次初等变换得到的矩阵。

定理 对于任意方阵A,只用有限次倍加行变换或者有限次倍加列变换都能将A化为上三角矩阵。

定理 对于任何 m × n m\times n m×n非零矩阵A,必能用初等变换将它化为 F = [ E s O O O ] F=\begin{bmatrix}E_s&O\\O&O\end{bmatrix} F=[EsOOO]。F称为A的等价相抵型。

2. 行列式

余子阵A(i,j) 从方阵 A m × n A_{m\times n} Am×n中去掉 a i j a_{ij} aij所在的第i行,第j列所余下的n-1阶方阵。

方阵A的行列式 ∣ A ∣ \vert A\vert A或者 d e t ( A ) = ∑ k = 1 n a k 1 ( − 1 ) k + 1 A ( k , 1 ) det(A)=\sum_{k=1}^n a_{k1}(-1)^{k+1}A(k,1) det(A)=k=1nak1(1)k+1A(k,1)

代数余子式 A i j = ( − 1 ) i + j d e t ( A ( i , j ) ) A_{ij}=(-1)^{i+j}det(A(i,j)) Aij=(1)i+jdet(A(i,j))

行列式的性质

  • ∣ A T ∣ = ∣ A ∣ \vert A^T\vert=\vert A\vert AT=A
  • 行列式可以在任意一行或者一列展开
  • 行列式的线性性质
    • ∣ a 1 , ⋯   , k a j , ⋯   , a n ∣ = k ∣ a 1 , ⋯   , a j , ⋯   , a n ∣ \vert a_1,\cdots,ka_j,\cdots,a_n\vert=k\vert a_1,\cdots,a_j,\cdots,a_n\vert a1,,kaj,,an=ka1,,aj,,an
    • ∣ a 1 , ⋯   , a j + b , ⋯   , a n ∣ = ∣ a 1 , ⋯   , a j , ⋯   , a n ∣ + ∣ a 1 , ⋯   , b , ⋯   , a n ∣ \vert a_1,\cdots,a_j+b,\cdots,a_n\vert=\vert a_1,\cdots,a_j,\cdots,a_n\vert+\vert a_1,\cdots,b,\cdots,a_n\vert a1,,aj+b,,an=a1,,aj,,an+a1,,b,,an
  • 倍加行列变换不改变行列式的值
  • 对调行列变换使行列式值*-1
  • 行列式某一列的每个元素乘以另一列对应元素的代数余子式之和为零

分块三角行列式
∣ A C O B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix} A&C\\ O&B\\ \end{vmatrix} =\vert A\vert\vert B\vert AOCB=AB
设A和B为n阶方阵,则称 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \vert AB\vert = \vert A\vert\vert B\vert AB=AB

3. 可逆矩阵

可逆矩阵 对于n阶方阵A,若存在n阶方阵B,使得 A B = B A = E AB=BA=E AB=BA=E,则称A或者B为可逆矩阵,并且 A − 1 = B A^{-1}=B A1=B

定理 若A是可逆矩阵,则A的逆矩阵是唯一的。

伴随矩阵
A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋯ ⋯ ⋯ ⋯ A 1 n A 2 n ⋯ A n n ] A^*=\begin{bmatrix} A_{11}&A_{21}&\cdots &A_{n1}\\ A_{12}&A{22}&\cdots &A_{n2}\\ \cdots&\cdots&\cdots&\cdots\\ A_{1n}&A_{2n}&\cdots &A_{nn} \end{bmatrix} A=A11A12A1nA21A22A2nAn1An2Ann
定理 设A为方阵,则 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\vert A\vert E AA=AA=AE

方阵A可逆的充要条件为 ∣ A ∣ ≠ 0 \vert A\vert\not=0 A=0。并且当A可逆时, ∣ A − 1 ∣ = 1 ∣ A ∣ , A − 1 = A ∗ ∣ A ∣ \displaystyle \vert A^{-1}\vert=\frac{1}{\vert A\vert},A^{-1}=\frac{A^*}{\vert A\vert} A1=A1,A1=AA

对于方阵A,若 ∣ A ∣ = 0 \vert A\vert=0 A=0,称为奇异矩阵。若 ∣ A ∣ ≠ 0 \vert A\vert\not=0 A=0,称为非奇异矩阵

若方阵AB满足 A B = E AB=E AB=E,则A和B都可逆,并且 A − 1 = B A^{-1}=B A1=B并且 B − 1 = A B^{-1}=A B1=A

若A和B为同阶可逆矩阵,则AB也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

4. 数量积、向量积

两个向量的数量积是一个数,记作 a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ c o s θ \vec a\cdot \vec b=\vert\vec a\vert\vert \vec b\vert cos\theta a b =a b cosθ

叉乘积 a ⃗ × b ⃗ = [ i ⃗ j ⃗ k ⃗ a x a y a z b x b y b z ] \vec a\times \vec b=\begin{bmatrix}\vec i&\vec j&\vec k\\a_x&a_y&a_z\\b_x&b_y&b_z\end{bmatrix} a ×b =i axbxj aybyk azbz

5. 线性相关性和矩阵的秩

对于向量组 a 1 , a 2 , ⋯   , a n , b a_1,a_2,\cdots,a_n,b a1,a2,,an,b,若存在n个数 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn,使得 b = k 1 a 1 + k 2 a 2 + ⋯ + k n a n b=k_1a_1+k_2a_2+\cdots+k_na_n b=k1a1+k2a2++knan,则称向量b可由向量 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an线性表示

若存在n个不全为0的数 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn,使得 k 1 a 1 + k 2 a 2 + ⋯ + k n a n = 0 k_1a_1+k_2a_2+\cdots+k_na_n=0 k1a1+k2a2++knan=0,则称该向量组线性相关

当且仅当 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn全为零时,才使 k 1 a 1 + k 2 a 2 + ⋯ + k n a n = 0 k_1a_1+k_2a_2+\cdots+k_na_n=0 k1a1+k2a2++knan=0成立,则称该向量组线性无关

定理 向量组 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an线性相关的充要条件为该向量组中至少有一个向量能被其他向量线性表示。

在向量组V中,若有含r个向量的子向量组线性无关,并且V中任何含r+1个向量的向量组都线性相关,则把r称为向量组V的秩

若向量组V的秩为r,则V中含r个线性无关的子向量组称为极大无关组

向量组V中每个向量都可由其极大无关组唯一的线性表示。

设A为 m × n m\times n m×n矩阵, 1 < = k < = m i n { m , n } 1<=k<=min\{m,n\} 1<=k<=min{m,n},由矩阵A的任意k个行和任意k个列相交处的 k 2 k^2 k2个元素按照原来的相对位置所构成的方阵叫做矩阵A的k阶子阵,其行列式叫做矩阵A的k阶子式

矩阵A中非奇异子阵的最高阶数称为A的秩,记作 r ( A ) r(A) r(A)

矩阵秩的性质

  • r ( A T ) = r ( A ) r(A^T)=r(A) r(AT)=r(A)
  • r ( A ) r(A) r(A)=A的行秩=A的列秩
  • 初等变换不改变矩阵的秩
  • A的秩为r ↔ \leftrightarrow A与 F = [ E r O O O ] F=\begin{bmatrix}E_r&O\\O&O\\\end{bmatrix} F=[ErOOO]等价,说明存在可逆矩阵 P , Q P,Q P,Q,使得 P A Q = F PAQ=F PAQ=F
  • A m × n , B s × t , C m × t A_{m\times n},B_{s\times t},C_{m\times t} Am×n,Bs×t,Cm×t矩阵,则
    • r ( [ A O O B ] ) = r ( A ) + r ( B ) r(\begin{bmatrix}A&O\\O&B\\\end{bmatrix})=r(A)+r(B) r([AOOB])=r(A)+r(B)
    • r ( [ A C O B ] ) > = r ( A ) + r ( B ) r(\begin{bmatrix}A&C\\O&B\\\end{bmatrix})>=r(A)+r(B) r([AOCB])>=r(A)+r(B)
  • A m × k A_{m\times k} Am×k, B k × n B_{k\times n} Bk×n, 则 r ( A ) + r ( B ) − k < = r ( A B ) < = m i n { r ( A ) , r ( B ) } r(A)+r(B)-k<=r(AB)<=min\{r(A),r(B)\} r(A)+r(B)k<=r(AB)<=min{r(A),r(B)}

若A为方阵,当 r ( A ) = n r(A)=n r(A)=n时,A称为满秩矩阵

若向量组 I : b 1 , b 2 , ⋯   , b n I:b_1,b_2,\cdots,b_n I:b1,b2,,bn中每个向量能够被向量组 I I : a 1 , a 2 , ⋯   , a n II:a_1,a_2,\cdots,a_n II:a1,a2,,an线性表示,则称向量组 I I I能够被向量组 I I II II线性表示。如果向量组 I I I和向量组 I I II II能够互相线性表示,则称之为等价向量组

6. 线性方程组

定理 m × n m\times n m×n齐次线性方程组 A x = 0 Ax=0 Ax=0只有零解的充要条件为 r ( A ) = n r(A)=n r(A)=n,存在非零解的充要条件为 r ( A ) < n r(A)<n r(A)<n

定理 A x = b Ax=b Ax=b m × n m\times n m×n非齐次线性方程组,则

  • A x = b Ax=b Ax=b有解 ↔ \leftrightarrow r ( [ A , b ] ) = r ( A ) r([A,b])=r(A) r([A,b])=r(A)
  • A x = b Ax=b Ax=b有唯一解 ↔ r ( [ A , b ] ) = r ( A ) = n \leftrightarrow r([A,b])=r(A)=n r([A,b])=r(A)=n

线性方程组解的性质

齐次线性方程组 A x = 0 Ax=0 Ax=0的解集为S的极大无关组称为该齐次方程组的基础解系。若 v 1 , v 2 , ⋯   , v n v_1,v_2,\cdots,v_n v1,v2,,vn为齐次方程组 A x = 0 Ax=0 Ax=0的解,则 k 1 v 1 + k 2 v 2 + ⋯ + k n v n k_1v_1+k_2v_2+\cdots+k_nv_n k1v1+k2v2++knvn A x = 0 Ax=0 Ax=0的解。

u u u为非齐次线性方程组 A x = b Ax=b Ax=b的解, v v v A x = 0 Ax=0 Ax=0的解,则 u + v u+v u+v A x = b Ax=b Ax=b的解。

非齐次线性方程组 A x = b Ax=b Ax=b的两个解 u 1 u_1 u1 u 2 u_2 u2的差 u 1 − u 2 u_1-u_2 u1u2 A x = 0 Ax=0 Ax=0的解。

u 1 , u 2 , ⋯   , u s u_1,u_2,\cdots,u_s u1,u2,,us为齐次线性方程组 A x = b Ax=b Ax=b的解,则

  • k 1 u 1 + k 2 u 2 + ⋯ + k s u s k_1u_1+k_2u_2+\cdots+k_su_s k1u1+k2u2++ksus A x = 0 Ax=0 Ax=0的解,则 k 1 + k 2 + ⋯ + k n = 0 k_1+k_2+\cdots+k_n=0 k1+k2++kn=0
  • k 1 u 1 + k 2 u 2 + ⋯ + k s u s k_1u_1+k_2u_2+\cdots+k_su_s k1u1+k2u2++ksus A x = b Ax=b Ax=b的解,则 k 1 + k 2 + ⋯ + k n = 1 k_1+k_2+\cdots+k_n=1 k1+k2++kn=1

定理 齐次线性方程组 A x = 0 Ax=0 Ax=0的解集S的秩为 r ( S ) = n − r ( A ) r(S)=n-r(A) r(S)=nr(A),即 A x = 0 Ax=0 Ax=0的基础解系所含向量的个数为 n − r ( A ) n-r(A) nr(A),其中n为未知数的个数,即A的列数。

A m × n A_{m\times n} Am×n,则 r ( A T A ) = r ( A A T ) = r ( A ) r(A^TA)=r(AA^T)=r(A) r(ATA)=r(AAT)=r(A)

设u为非齐次线性方程组 A x = b Ax=b Ax=b的一个已知解, v 1 , v 2 , ⋯   , v n − r v_1,v_2,\cdots,v_{n-r} v1,v2,,vnr A x = 0 Ax=0 Ax=0的基础解系,则 A x = b Ax=b Ax=b的通解为 x = k 1 v 1 + k 2 v 2 + ⋯ + k n v n x=k_1v_1+k_2v_2+\cdots+k_nv_n x=k1v1+k2v2++knvn

7. 向量空间及向量的正交性

设V为n元向量的集合,如果V非空,并且对于向量的线性运算封闭,即对任意的 v 1 ∈ V , v 2 ∈ V , k ∈ R v_1\in V,v_2\in V,k\in R v1V,v2V,kR,都有 v 1 + v 2 ∈ V , k v 1 ∈ V v_1+v_2\in V,kv_1\in V v1+v2V,kv1V,则称V是一个向量空间

齐次线性方程组 A x = 0 Ax=0 Ax=0的所有解向量构成的集合S是一个向量空间,称之为齐次线性方程组的解空间

a 1 , a 2 , ⋯   , a m a_1,a_2,\cdots,a_m a1,a2,,am是m个已知的n元向量,则集合 V = { v = ∑ j = 1 m x j a j ∣ x 1 , x 2 , ⋯   , x n ∈ R } V=\{v=\sum_{j=1}^mx_ja_j|x_1,x_2,\cdots,x_n\in R\} V={v=j=1mxjajx1,x2,,xnR}是一个向量空间,将之称为由向量 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an所生成的向量空间。通常记作 V = s p a n { a 1 , a 2 , ⋯   , a n } V=span\{a_1,a_2,\cdots,a_n\} V=span{a1,a2,,an}

V 1 V_1 V1 V 2 V_2 V2是两个向量空间。若 V 1 ⊆ V 2 V_1\subseteq V_2 V1V2,则称 V 1 V_1 V1 V 2 V_2 V2子空间

V 1 ⊆ V 2 V_1\subseteq V_2 V1V2 V 2 ⊆ V 1 V_2\subseteq V_1 V2V1,则称这两个向量空间相等,记作 V 1 = V 2 V_1=V_2 V1=V2

向量空间V的一个极大无关组称为V的一个。V的秩称为V的维数,记为 d i m ( V ) dim(V) dim(V)。若 d i m ( V ) = r dim(V)=r dim(V)=r,则称V为r维向量空间

定理 设V是n维向量空间,m<n,则V中任一线性无关的向量组 v 1 , v 2 , ⋯   , v m v_1,v_2,\cdots,v_m v1,v2,,vm都可扩充为V的一个基。

a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an是n维向量空间V的一个基,对任意向量 b ∈ V b\in V bV,把满足 b = x 1 a 1 + x 2 a 2 + ⋯ + x n a n b=x_1a_1+x_2a_2+\cdots+x_na_n b=x1a1+x2a2++xnan的有序数 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn叫做向量b在这个基下的坐标 x ⃗ = [ x 1 , x 2 , ⋯   , x n ] T \vec x = [x_1,x_2,\cdots,x_n]^T x =[x1,x2,,xn]T称为向量 b ⃗ \vec b b 在这个基下的坐标向量

a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an为n维向量空间V的一个基,称为旧基,则V的另外一个基称为新基

[ b 1 , b 2 , ⋯   , b n ] = [ a 1 , a 2 , ⋯   , a n ] P [b_1,b_2,\cdots,b_n]=[a_1,a_2,\cdots,a_n]P [b1,b2,,bn]=[a1,a2,,an]P

称P为从旧基 [ a 1 , a 2 , ⋯   , a n ] [a_1,a_2,\cdots,a_n] [a1,a2,,an]到新基 [ b 1 , b 2 , ⋯   , b n ] [b_1,b_2,\cdots,b_n] [b1,b2,,bn]过渡矩阵

a ⃗ = [ a 1 , a 2 , ⋯   , a n ] T , b ⃗ = [ b 1 , b 2 , ⋯   , b n ] T \vec a=[a_1,a_2,\cdots,a_n]^T,\vec b = [b_1,b_2,\cdots,b_n]^T a =[a1,a2,,an]T,b =[b1,b2,,bn]T是两个实向量,$\vec a 和 和 \vec b 的 ∗ ∗ 内 积 ∗ ∗ 记 作 的**内积** 记作 (\vec a,\vec b) , 规 定 ,规定 (\vec a,\vec b)=a_1b_1+a_2b_2+\cdots+a_nb_n 。 也 可 以 用 矩 阵 运 算 表 示 内 积 。也可以用矩阵运算表示内积 (\vec a,\vec b)=a^Tb$。

定义了内积的向量空间称为欧式空间

实向量 a ⃗ = [ a 1 , a 2 , ⋯   , a n ] T \vec a=[a_1,a_2,\cdots,a_n]^T a =[a1,a2,,an]T长度,也称为范数,记作 ∥ a ⃗ ∥ \Vert \vec a\Vert a ,规定 ∥ a ⃗ ∥ = a 1 2 + a 2 2 + ⋯ + a n 2 \Vert \vec a\Vert=\sqrt{a_1^2+a_2^2+\cdots+a_n^2} a =a12+a22++an2

∥ a ⃗ ∥ = 1 \Vert \vec a\Vert=1 a =1时, a ⃗ \vec a a 单位向量;对于非零向量 a ⃗ \vec a a ,称 a ⃗ ∥ a ⃗ ∥ \displaystyle \frac{\vec a}{\Vert\vec a\Vert} a a a ⃗ \vec a a 单位化向量

a ⃗ ≠ 0 , b ⃗ ≠ 0 \vec a\not=0,\vec b\not=0 a =0,b =0时, θ = a r c c o s ( a ⃗ , b ⃗ ) ∥ a ⃗ ∥ ∥ b ∥ \theta = arccos\frac{(\vec a,\vec b)}{\Vert \vec a\Vert\Vert b \Vert} θ=arccosa b(a ,b )称为向量 a ⃗ \vec a a 和向量 b ⃗ \vec b b 的夹角

并且定义当 θ = 0 \theta=0 θ=0时,即 a T b = 0 a^Tb=0 aTb=0时,称向量 a ⃗ \vec a a 和向量 b ⃗ \vec b b 正交

由两两正交的非零向量组成的向量组称为正交向量组。由单位向量组成的正交向量组称为标准化正交向量组

定理 正交向量一定线性无关。

施密特正交化 将一组线性无关的向量组转化为正交向量组。

假设 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an是一个线性无关的向量组
{ b 1 = a 1 b j = a j − ∑ i = 1 j − 1 b i T a j ∥ b i 2 ∥ b i ( j = 2 , 3 , ⋯   , m ) \begin{cases} b_1=a_1\\ b_j=a_j-\sum_{i=1}^{j-1}\frac{b_i^Ta_j}{\Vert b_i^2\Vert}b_i(j=2,3,\cdots,m) \end{cases} {b1=a1bj=aji=1j1bi2biTajbi(j=2,3,,m)
b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn为正交向量组。然后将之单位化, b i = b i ∣ b i ∣ \displaystyle b_i=\frac{b_i}{\vert b_i\vert} bi=bibi

若实方阵A满足 A T A = E A^TA=E ATA=E,则称A为正交矩阵

正交矩阵的性质

A,B为同阶正交矩阵

  • A可逆,且 A − 1 = A T A^{-1}=A^T A1=AT
  • A T A^T AT为正交矩阵, A − 1 A^{-1} A1也为正交矩阵。
  • AB为正交矩阵
  • ∣ A ∣ = 1   o r   − 1 \vert A \vert=1\ or\ -1 A=1 or 1

实方阵A为正交矩阵的充要条件为 A A A的列向量组为标准正交向量组。

8 方阵的特征值和相似对角化

设A为n阶方阵, λ \lambda λ为变量,把 ∣ λ E − A ∣ = 0 \vert\lambda E-A\vert=0 λEA=0的根称为A的特征值(单根称为单特征值,重根称为重特征值)。

λ i \lambda_i λi是A的特征值,则齐次线性方程组 ( λ i E − A ) x = 0 (\lambda_i E-A)x=0 (λiEA)x=0的非零解向量称为A的对应于 λ i \lambda_i λi特征向量。将 ∣ λ i E − A ∣ = 0 \vert\lambda_i E-A\vert=0 λiEA=0称为A的特征方程

性质 n阶方阵A在复数域内有且只有n个特征值(k重特征值有k个)。

∣ λ E − A ∣ = λ n − t r ( A ) λ n − 1 + ⋯ + ( − 1 ) n ∣ A ∣ \vert\lambda E-A\vert=\lambda^n-tr(A)\lambda^{n-1}+\cdots+(-1)^n\vert A \vert λEA=λntr(A)λn1++(1)nA 称为特征多项式

t r ( A ) tr(A) tr(A)称为A的,等于A的n个对角元之和。

若n阶方阵A的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn,则

  • t r ( A ) = λ 1 + λ 2 + ⋯ + λ n tr(A)=\lambda_1+\lambda_2+\cdots+\lambda_n tr(A)=λ1+λ2++λn
  • λ 1 λ 2 ⋯ λ n = ∣ A ∣ \lambda_1\lambda_2\cdots\lambda_n=\vert A\vert λ1λ2λn=A

推论

  • 方阵A可逆,则 λ 1 λ 2 ⋯ λ n = ∣ A ∣ ≠ 0 \lambda_1\lambda_2\cdots\lambda_n=\vert A\vert \not=0 λ1λ2λn=A=0,则 λ 1 ≠ 0 , λ 2 ≠ 0 , ⋯   , λ n ≠ 0 \lambda_1\not=0,\lambda_2\not=0,\cdots,\lambda_n\not=0 λ1=0,λ2=0,,λn=0
  • 设A为n阶方阵,则 λ \lambda λ为A的特征值且 p p p λ \lambda λ对应的特征向量 ↔ \leftrightarrow λ \lambda λ和n元非零向量 p p p满足 A p = λ p Ap=\lambda p Ap=λp
  • λ \lambda λ是方阵A的特征值,p是对应的特征向量,k是正整数,则 λ k \lambda^k λk A k A^k Ak的特征值,p仍是对应的特征向量。
  • 可以验证 f ( A ) p = f ( λ ) p f(A)p=f(\lambda)p f(A)p=f(λ)p
  • λ \lambda λ为可逆矩阵A的特征值,p是对应的特征向量,则 λ − 1 \lambda^-1 λ1 ∣ A ∣ λ − 1 \vert A\vert\lambda^{-1} Aλ1分别是 A − 1 A^{-1} A1 A ∗ A^* A的特征值,p仍然是对应的特征向量。
  • 方阵 A T A^T AT和A的特征值相同。
  • λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn是方阵A的互异特征值,则它们分别对应的特征向量 p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_n p1,p2,,pn一定线性无关。
  • λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn是方阵A的互异特征值, p i 1 , p i 2 , ⋯   , p i r i p_{i1},p_{i2},\cdots,p_{ir_i} pi1,pi2,,piri λ i \lambda_i λi对应的线性无关的特征向量,则 p 11 , p 12 , p 13 , ⋯   , p m r m p_{11},p_{12},p_{13},\cdots,p_{mr_m} p11,p12,p13,,pmrm线性无关。

设A,B为n阶矩阵,如果存在n阶可逆矩阵P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则称A和B相似 P − 1 A P P^{-1}AP P1AP称为对A进行相似变换,P称为相似变换矩阵

如果相似变换矩阵P是正交矩阵,则称A和B正交相似 P − 1 A P = B P^{-1}AP=B P1AP=B为对A进行正交相似变换

  • A A A和B相似,则 A k A^k Ak B k B^k Bk相似
  • 若A和B相似,则A和B的特征多项式相同,从而A和B的特征值、行列式及迹均相同。

如果A能够和对角矩阵相似,则称A可相似对角化。若A可相似对角化,则存在可逆矩阵P,能使 P A P − 1 = Λ PAP^{-1}=\Lambda PAP1=Λ

实对称矩阵A的特征值都是实数。

定理 实对称矩阵A的相似特征值 λ \lambda λ μ \mu μ分别对应的特征向量p和q一定正交。

定理 对于任意n阶实对称矩阵A,都存在正交矩阵Q,使得 Q − 1 A Q = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) Q^{-1}AQ=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) Q1AQ=diag(λ1,λ2,,λn)

9. 二次型

A m × n A_{m\times n} Am×n x = [ x 1 , x 2 , ⋯   , x n ] T x=[x_1,x_2,\cdots,x_n]^T x=[x1,x2,,xn]T f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx二次型 f ( x ) f(x) f(x)的矩阵

对于n元二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,若对任意n元非零向量x都有 f ( x ) > 0 f(x)>0 f(x)>0,则称该二次型为正定二次型。若对任意n元非零向量x都有 f ( x ) < 0 f(x)<0 f(x)<0,则称该二次型为负定二次型,称A为负定矩阵

实对称矩阵A为正定矩阵的充要条件为A的各阶顺序主子式都大于0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值