GAN loss

本文介绍了GAN(生成对抗网络)的三种损失函数:传统GAN、最小二乘GAN(LSGAN)和Wasserstein GAN带梯度惩罚(WGAN-GP)。传统GAN的目标公式和损失函数被详细阐述,接着是LSGAN的改进,其中损失函数采用了最小二乘方法。WGAN-GP通过添加梯度惩罚项来稳定训练。实验结果显示,LSGAN在效果和训练速度上优于WGAN-GP,但不同的数据集可能需要进一步测试以选择最佳方案。
摘要由CSDN通过智能技术生成

传统GAN

来源:https://arxiv.org/abs/1406.2661

符号解释
G G G Generator生成器
D D D Discriminator判别器
P d a t a P_{data} Pdata 真实数据分布
P G P_G PG 生成器生成数据分布

目标公式
min ⁡ G max ⁡ D E x ∼ P d a t a [ log ⁡ D ( x ) ] + E z ∼ P G [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min _{G} \max _{D} \mathbb{E}_{\boldsymbol{x} \sim P_{data}}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{\boldsymbol{z}} \sim P_G}[\log (1-D(G(\boldsymbol{z})))] GminDmaxExPdata[logD(x)]+EzPG[log(1<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值