GAN loss

本文介绍了GAN(生成对抗网络)的三种损失函数:传统GAN、最小二乘GAN(LSGAN)和Wasserstein GAN带梯度惩罚(WGAN-GP)。传统GAN的目标公式和损失函数被详细阐述,接着是LSGAN的改进,其中损失函数采用了最小二乘方法。WGAN-GP通过添加梯度惩罚项来稳定训练。实验结果显示,LSGAN在效果和训练速度上优于WGAN-GP,但不同的数据集可能需要进一步测试以选择最佳方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统GAN

来源:https://arxiv.org/abs/1406.2661

符号解释
G G G Generator生成器
D D D Discriminator判别器
P d a t a P_{data} Pdata 真实数据分布
P G P_G PG 生成器生成数据分布

目标公式
min ⁡ G max ⁡ D E x ∼ P d a t a [ log ⁡ D ( x ) ] + E z ∼ P G [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min _{G} \max _{D} \mathbb{E}_{\boldsymbol{x} \sim P_{data}}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{\boldsymbol{z}} \sim P_G}[\log (1-D(G(\boldsymbol{z})))] GminDmaxExPdata[logD(x)]+EzPG[log(1<

GAN(生成对抗网络)是一种用于生成模型的机器学习算法,它由一个生成器网络和一个判别器网络组成。GAN的目标是让生成器网络生成的样本尽可能地接近真实样本,同时让判别器网络能够准确地区分真实样本和生成样本。 在GAN中,生成器网络和判别器网络通过对抗的方式进行训练。生成器网络的目标是生成尽可能逼真的样本,而判别器网络的目标是准确地判断样本的真实性。为了实现这个目标,需要定义一个合适的损失函数来指导训练过程。 GAN的损失函数通常由两部分组成:生成器损失和判别器损失。生成器损失用于衡量生成器网络生成的样本与真实样本之间的差异,而判别器损失用于衡量判别器网络对真实样本和生成样本的判断准确性。 常见的GAN损失函数包括以下几种: 1. 生成器损失:通常使用交叉熵损失函数,衡量生成样本与真实样本之间的差异。生成器的目标是最小化生成器损失,使得生成样本更接近真实样本。 2. 判别器损失:同样使用交叉熵损失函数,衡量判别器对真实样本和生成样本的判断准确性。判别器的目标是最小化判别器损失,使得判别器能够准确地区分真实样本和生成样本。 3. 对抗损失:通过最大化生成器损失和最小化判别器损失的组合来实现对抗训练。对抗损失可以使用交叉熵损失函数或其他适合的损失函数。 总结一下,GAN的损失函数通常由生成器损失和判别器损失组成,通过对抗训练的方式来优化生成器和判别器网络。具体的损失函数的形式可以根据具体的应用场景和网络结构进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值