Integrated Fluid–Structure Simulation for Full Burning of a Solid-Propellant Rocket Interior
作者:Han S, Kim C.
简介
固体火箭发动机内是:流动、结构和燃烧相互耦合的多物理现象(个人认为还有传热)
流-热-固-燃烧
Each module (fluid, structure, and burning) generates a nonlinear feedback cycle by influencing one another. As a result, the interior phenomena in the solid rocket exhibit highly unsteady, multiscale, and multiphysical features.
方法:The arbitrary Lagrangian Eulerian description (ALE)1’2
The arbitrary Lagrangian Eulerian (ALE) kinematical description is adopted for the clear delineation of the dynamic fluid–structure surface.
文章的计算案例是轴对称的装药,计算时间从初始点火到燃烧尽(full-burning)(可见计算量之大)
The integrated program is then applied to the simulation of a 2-D axisymmetric solid rocket
interior model with a pyrogen-type igniter
时间离散格式和对流项离散格式,这里与Alavilli P, Tafti D, Najjar F的一篇文章相似
The third-order total variation diminishing Runge–Kutta scheme and point Gauss–Seidel scheme are used for time marching. As a spatial flux scheme, AUSMPW+ is used to accurately capture physical discontinuities without numerical oscillation
使用Arruda–Boyce非线性弹性力学模型,使用广义Maxwell粘弹性力学模型
使用一维导热来决定燃速
For fluid simulation, unstructured mesh is adopted to handle the complex geometry. Dynamic analysis in a solid domain is performed using a four-node rectangular element.
结果
作者讨论了使用粘性气体和非粘性气体的不同,
In the inviscid simulation, high-temperature gas from the burning surface can be readily transported into the neighboring unburned region by a tangential slip flow along the grain surface, whereas no-slip boundary
condition in the viscous simulation excludes the tangential velocity component.
The simulation results demonstrate the detailed flow physics of the initial burning and the flame propagation characteristics of the exposed grain surface and the behavior of the structural deformation of the propellant grain.
Hirt, C. W., Amsden, A. A., and Cook, J. L., “An Arbitrary Lagrangian Eulerian Computing Method for All Flow Speeds,” Journal of Computational Physics, Vol. 14, No. 3, 1974, pp. 227–253. doi:10.1016/0021-9991(74)90051-5; reprint, Journal of Computational Physics, Vol. 135, No. 2, 1997, pp. 203–216. ↩︎
Donea, J., “Arbitrary Lagrangian-Eulerian Finite Element Methods,” Computational Methods for Transient Analysis, edited by Belyrschko, T., and Hughes, T. J. R., North-Holland, Amsterdam, 1983, pp. 474–516. ↩︎