91. 解码方法-深度优先遍历法
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
‘A’ -> “1”
‘B’ -> “2”
…
‘Z’ -> “26”
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:
"AAJF" ,将消息分组为 (1 1 10 6)
"KJF" ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = “12”
输出:2
解释:它可以解码为 “AB”(1 2)或者 “L”(12)。
示例 2:
输入:s = “226”
输出:3
解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。
示例 3:
输入:s = “0”
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 ‘J’ -> “10” 和 ‘T’-> “20” 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。
博主一开始采用的深度优先遍历法,不过没有时间开销通过,解题代码如下:
int count;
void dfs(char *s,int length,int now_po){
if(now_po==length){
count++;
printf("%d ",count);
}
else{
if(s[now_po]!='0'){
dfs(s,length,now_po+1);
}
if(s[now_po]=='1'&&now_po<length-1){
dfs(s,length,now_po+2);
}
if(s[now_po]=='2'&&now_po<length-1&&s[now_po+1]<='6'){
dfs(s,length,now_po+2);
}
}
}
int numDecodings(char * s){
int length=strlen(s);
count=0;
dfs(s,length,0);
return count;
}
因为上面那个解法,时间开销不够,所以我有写了一个动态规划算法,可以运行成功,解题代码如下:
int numDecodings(char * s){
int length=strlen(s);
int dp[length+1];
if(s[0]=='0'){
return 0;
}
dp[0]=1;
dp[1]=1;
for(int i=2;i<length+1;i++){
if(s[i-1]=='0'&&(s[i-2]>'2'||s[i-2]=='0')){
return 0;
}
if(s[i-1]=='0'){
dp[i]=dp[i-2];
continue;
}
if(s[i-2]=='1'){
dp[i]=dp[i-1]+dp[i-2];
}
else if(s[i-2]=='2'&&s[i-1]<='6'){
dp[i]=dp[i-1]+dp[i-2];
}
else{
dp[i]=dp[i-1];
}
}
return dp[length];
}