YOLO数据集实现数据增强的方法(裁剪、平移 、旋转、改变亮度、加噪声等)

本文介绍了如何使用数据增强技术扩大YOLO目标检测模型的训练数据集,包括翻转、旋转、裁剪、亮度调整等方法,以提高模型的鲁棒性和泛化能力。通过这些方法,作者将原始的1260张图片扩充到7560张。
摘要由CSDN通过智能技术生成

前言

最近我在做论文实验时从MSCOCO数据集中筛选了符合条件的1260张图片,但数据样本太少了,于是我就利用数据增强的方法实现了带标签的样本扩充,最后扩充为7560张图片。本文就来记录一下过程,有不懂的地方欢迎留言噢~

目录

前言

👥一、什么是数据增强

👥二、数据增强的作用

👥三、常见的数据增强

👥四、如何在YOLO中实现数据增强

第①步 前期准备

 第②步 加入数据增强的代码

第③步 运行 

第④步 将xml文件转化为txt文件

🌟本人YOLOv5系列导航

👥一、什么是数据增强

       数据增强是一种重要的机器学习方法之一,是基于已有的训练样本数据来生成更多的训练数据,其目的就是

评论 201
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路人贾'ω'

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值