深度学习算法informer(时序预测)(六)(数据处理、自注意力、自适应调节学习率、早停法)

一、数据处理

假设选取25h数据,即前24个时间点数据作为编码器输入,特征值只有温度,解码器的输入与编码器的输入不同,将编码器的输入倒数12个时间点数据拼接第25个时间点数据作为解码器的输入

注意

  1. 若进行反归一化,则编码器倒数12个时间点数据需进行归一化操作后和未经过归一化操作的第25个时间点数据进行拼接
  2. 进行反归一化,则编码器最后12个时间点数据和第25个时间点数据均需进行归一化操作后进行拼接
class StandardScaler():
    def __init__(self):
        self.mean = 0.
        self.std = 1.
    
    def fit(self, data):
        self.mean = data.mean(0)
        self.std = data.std(0)

    def transform(self, data):
        mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean
        std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std
        return (data - mean) / std

    def inverse_transform(self, data):
        mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean
        std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std
        if data.shape[-1] != mean.shape[-1]:
            mean = mean[-1:]
            std = std[-1:]
        return (data * std) + mean

class Dataset_ETT_hour(Dataset):
    def __init__(self, root_path, flag='train', size=None, 
                 features='S', data_path='ETTh1.csv',
                 target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None):
        # size [seq_len, label_len, pred_len]
        # info
        if size == None:
            self.seq_len = 24*4*4
            self.label_len = 24*4
            self.pred_len = 24*4
        else:
            self.seq_len = size[0]
            self.label_len = size[1]
            self.pred_len = size[2]
        # init
        assert flag in ['train', 'test', 'val']
        type_map = {'train':0, 'val':1, 'test':2}
        self.set_type = type_map[flag]
        
        self.features = features
        self.target = target
        self.scale = scale
        self.inverse = inverse
        self.timeenc = timeenc
        self.freq = freq
        
        self.root_path = root_path
        self.data_path = data_path
        self.__read_data__()

    def __read_data__(self):
        self.scaler = StandardScaler()
        df_raw = pd.read_csv(os.path.join(self.root_path,
                                          self.data_path))

        #little
        # df_raw = df_raw[df_raw['date'] < '2016-10-01']

        border1s = [0, 12*30*24 - self.seq_len, 12*30*24+4*30*24 - self.seq_len]
        border2s = [12*30*24, 12*30*24+4*30*24, 12*30*24+8*30*24]

        # little_sample
        # border1s = [0, 2 * 30 * 24 - self.seq_len, 2 * 30 * 24 + 0.5 * 30 * 24 - self.seq_len]
        # border2s = [2 * 30 * 24, 2 * 30 * 24 + 0.5 * 30 * 24, 2 * 30 * 24 + 1 * 30 * 24]

        border1 = int(border1s[self.set_type])
        border2 = int(border2s[self.set_type])


        ## 训练集标准化,全部数据用到的是训练数据的参数均值方差
        if self.features=='M' or self.features=='MS':
            cols_data = df_raw.columns[1:]
            df_data = df_raw[cols_data]
        elif self.features=='S':
            df_data = df_raw[[self.target]]

        if self.scale:
            train_data = df_data[border1s[0]:border2s[0]]
            self.scaler.fit(train_data.values)
            data = self.scaler.transform(df_data.values)
        else:
            data = df_data.values
            
        df_stamp = df_raw[['date']][border1:border2]
        df_stamp['date'] = pd.to_datetime(df_stamp.date)
        data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq)


        #  hour of day /   day of wheek /  day of month / day of year
        self.data_x = data[border1:border2]
        if self.inverse:
            self.data_y = df_data.values[border1:border2]
        else:
            self.data_y = data[border1:border2]
        self.data_stamp = data_stamp
    
    def __getitem__(self, index):
        s_begin = index
        s_end = s_begin + self.seq_len
        r_begin = s_end - self.label_len 
        r_end = r_begin + self.label_len + self.pred_len

        seq_x = self.data_x[s_begin:s_end]
        # 若反归一化,label_length采用归一化的数据,pred_length采用未归一化数据,将其拼接作为解码器输入
        if self.inverse:
            seq_y = np.concatenate([self.data_x[r_begin:r_begin+self.label_len], self.data_y[r_begin+self.label_len:r_end]], 0)
        else:
            seq_y = self.data_y[r_begin:r_end]
        seq_x_mark = self.data_stamp[s_begin:s_end]
        seq_y_mark = self.data_stamp[r_begin:r_end]

        return seq_x, seq_y, seq_x_mark, seq_y_mark
    
    def __len__(self):
        # print('data_x', len(self.data_x))
        # print('seq_len', self.seq_len)
        # print('pred_len', self.pred_len)
        return len(self.data_x) - self.seq_len - self.pred_len + 1

    def inverse_transform(self, data):
        return self.scaler.inverse_transform(data)

二、自注意力网上原理太多,这里不再讲述原理,只做代码展示

class FullAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FullAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)
        
    def forward(self, queries, keys, values, attn_mask):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1./sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys)
        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)

            scores.masked_fill_(attn_mask.mask, -np.inf)

        A = self.dropout(torch.softmax(scale * scores, dim=-1))
        V = torch.einsum("bhls,bshd->blhd", A, values)
        
        if self.output_attention:
            return (V.contiguous(), A)
        else:
            return (V.contiguous(), None)

三、自适应调节学习率

这个函数通过两种策略调整学习率:

  1. 类型1:每个epoch减少一半的学习率
  2. 类型2:在特定的epoch,将学习率设置为预定义的值

在每个epoch结束时,根据当前的epoch和设定的调整策略,更新优化器的学习率

def adjust_learning_rate(optimizer, epoch, args):
    # lr = args.learning_rate * (0.2 ** (epoch // 2))
    if args.lradj=='type1':
        lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch-1) // 1))}
    elif args.lradj=='type2':
        # 如果args.lradj等于'type2',则学习率在特定的epoch设置为预定义的值
        # 在指定的epoch,学习率会调整为相应的值
        # 例如,在第2个epoch学习率变为5e-5,第4个epoch学习率变为1e-5,依此类推
        lr_adjust = {
            2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, 
            10: 5e-7, 15: 1e-7, 20: 5e-8
        }

    # 检查当前的epoch是否在lr_adjust字典的键中
    # 如果是,则将学习率设置为字典中对应的值
    # 更新优化器中每个参数组的学习率
    # 打印学习率更新的信息
    if epoch in lr_adjust.keys():
        lr = lr_adjust[epoch]
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
        print('Updating learning rate to {}'.format(lr))

四、早停法

目的是在验证损失不再显著改善时提前停止训练,从而防止过拟合

它会在每个epoch结束后调用,检查当前的验证损失是否改善

  1. 如果改善,则保存模型并重置计数器
  2. 如果没有改善,则增加计数器,直到计数器超过设定patience,然后停止训练
class EarlyStopping:

    """
    EarlyStopping类的目的是在验证损失不再显著改善时提前停止训练,从而防止过拟合
    它会在每个epoch结束后调用,检查当前的验证损失是否改善
    如果改善,则保存模型并重置计数器;
    如果没有改善,则增加计数器,直到计数器超过设定的patience,然后停止训练

    patience: 表示当验证损失不再改善时,允许的最大次数。如果超过这个次数,训练就会停止
    verbose: 决定是否在验证损失改善时打印信息
    counter: 记录验证损失未改善的次数
    best_score: 记录最好的验证损失得分
    early_stop: 表示是否应该提前停止训练
    val_loss_min: 记录最小的验证损失
    delta: 表示验证损失需要改善的最小变化量
    """
    def __init__(self, patience=7, verbose=False, delta=0):
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.val_loss_min = np.Inf
        self.delta = delta

    def __call__(self, val_loss, model, path):
        score = -val_loss
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(val_loss, model, path)
        elif score < self.best_score + self.delta:
            self.counter += 1
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(val_loss, model, path)
            self.counter = 0

    def save_checkpoint(self, val_loss, model, path):
        if self.verbose:
            print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ...')
        torch.save(model.state_dict(), path+'/'+'checkpoint.pth')
        self.val_loss_min = val_loss

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值