Informer网络的各个组件和结构(超详细)

在这里插入图片描述

这张图表详细描述了Informer网络的各个组件和结构,包括编码器(Encoder)和解码器(Decoder),以及每一部分的具体操作。以下是对每个部分的详细解释:

Encoder(编码器)

编码器部分负责处理输入数据并生成中间表示。具体步骤如下:

  1. Inputs(输入)

    • 1x3 Conv1d:一维卷积操作,卷积核大小为1x3,用于初步特征提取。
    • Embedding (d = 512):将输入数据嵌入到512维的高维空间中,以便于后续处理。
  2. ProbSparse Self-attention Block(稀疏自注意力块)

    • Multi-head ProbSparse Attention (h = 16, d = 32):多头概率稀疏自注意力机制,有16个头,每个头的维度为32。这个模块用于捕捉输入序列的长程依赖关系,同时通过稀疏化提升计算效率。
    • Add, LayerNorm, Dropout (p = 0.1):标准的添加和归一化操作,包括加法(Add)、层归
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值