2025美国大学生数学建模竞赛(美赛)选题建议

2025美国大学生数学建模竞赛(美赛)选题建议

提示:C君认为的难度和开放度评级如下:

以下为ABCDEF题选题建议及初步分析:(要注意的是,本次选题建议会给出每道题目的题目分析、第一问建模过程和推荐算法,然后根据学生不同的专业,针对性给出选题建议)。

A题:测试时间:楼梯的常规磨损 Problem A: Testing Time: The Constant Wear On Stairs

A题要求通过分析楼梯的磨损情况,推测楼梯的使用模式,包括使用频率、行走方向、是否多人同时使用等。该题的关键是从物理磨损数据中推断出人类活动模式,并利用这些模式推测楼梯的历史使用情况。模型需要考虑不同时间段的磨损特征,并结合可用的测量数据来得出合理的结论。

C君建议的建模过程为:首先需要获取楼梯表面的磨损数据,可以通过物理传感器(如压力传感器、图像识别等)对楼梯的表面进行扫描,收集每个楼梯踏板的磨损深度数据。然后使用回归分析方法,通过分析踏板的磨损模式和时间来预测其使用频率、使用时间等。为更好地还原实际情况,可以结合历史数据(如建筑物的使用年限、修复记录等)进行推算。

推荐算法:考虑到该问题涉及非线性磨损模式,推荐使用深度学习中的卷积神经网络(CNN)进行图像识别,以分析楼梯的磨损图像。CNN已被广泛应用于物体识别和图像分类,能够从图像中提取复杂的特征,适合本题的需求。此外,利用长短期记忆网络(LSTM)来建模时间序列数据,可以预测楼梯使用的时间模式,帮助进一步推测使用频率和方向。建议有CV领域基础的同学可以进行选择。这道题目可能有最优解,大家可以最后在网络上对对答案,答案的正确性将对结果产生较大影响。

B题:管理可持续旅游业 Problem B: Managing Sustainable Tourism

B题是较传统的建模类题目。要求构建一个可持续旅游业的管理模型,重点在于优化游客数量、收入和旅游业的生态影响等方面。模型需要考虑的变量包括游客数量、景点负载、环保措施的投入和产出等。该题的挑战在于如何平衡经济收入和环境保护,尤其是在面对过度旅游问题时,如何通过合理的政策确保旅游的长期可持续性。

C君推荐的建模过程为:首先,需要收集有关旅游流量、景点容量、资源消耗(如水电使用)以及环保措施(如碳排放控制、垃圾管理等)的数据。然后,基于数据建立优化模型,可能涉及到线性规划、整数规划等方法来最大化收入的同时最小化环境成本。为了考虑可持续性,模型还需要模拟不同政策的长期影响,如增加游客税、限制每日游客数等。

推荐算法有:由于该问题涉及复杂的约束优化,推荐使用强化学习(Reinforcement Learning, RL)来寻找最优的旅游管理策略。强化学习是一种近年来发展迅速的算法,能够通过模拟环境中的状态和动作来不断优化决策。应用强化学习,可以在模拟环境中测试不同的旅游管理政策,以找到对资源最友好的政策。同时,结合多目标优化算法(如遗传算法),可以更好地平衡经济和环保的目标。这道题开放度较高,适合数学、统计学等相关专业的同学进行选择。

C题:奥林匹克奖牌表模型

这道题就是很多同学在训练的时候经常做的题目类型了,属于大数据、数据分析类题目,同时也是团队擅长的题目。需要一定的建模能力,和其他赛事赛题类型类似,建议数学、自动化、数据科学、计算机科学相关专业的同学。C题聚焦于预测未来奥运会各国的奖牌数量,考虑的因素包括历史奖牌数据、奥运会项目设置、运动员变化等。由于奖牌数受多种因素影响(如运动员的表现、比赛项目的变化等),模型需要从历史数据中找出规律,预测未来赛事中的奖牌分配。

C君推荐的建模过程为:首先,需要收集历史奥运奖牌数据和赛事项目数据,并对数据进行预处理(如缺失值处理、异常值剔除等)。然后,可以使用时间序列模型来预测奖牌数。考虑到奖牌数可能受不同国家实力、赛事项目变化等因素影响,推荐使用深度学习中的图神经网络(GNN)来建模。GNN能够处理复杂的图结构数据,模拟各国之间的相互影响,预测奖牌的分配。

推荐使用图神经网络(GNN),该方法能够通过图结构来分析国家之间的依赖关系,尤其是在不同运动员、教练和运动项目之间的关联影响下。使用GNN可以深入挖掘数据中复杂的关系,同时,结合贝叶斯优化来调整预测模型中的超参数,提高模型的泛化能力。

在开始大家需要对数据进行分析和数值化处理,也就是EDA(探索性数据分析)。并且可以使用一些可视化方法,可以使用常见的EDA可视化方法:

  • 直方图和密度图:展示数值变量的分布情况。
  • 散点图:展示两个连续变量之间的关系。
  • 箱线图:展示数值变量的分布情况和异常值。
  • 条形图和饼图:展示分类变量的分布情况。
  • 折线图:展示随时间或顺序变化的趋势。
  • 热力图:展示不同变量之间的相关性。
  • 散点矩阵图:展示多个变量之间的散点图矩阵。
  • 地理图:展示地理位置数据和空间分布信息。

由于这篇是选题建议,就不赘述具体思路了。数据集怎么分析,可视化代码什么的,后续会更新。这道题目开放度较高,难度较适中。推荐所有专业同学选择门槛较低且开放度也相对较高。

D题:改善城市交通系统

本题的核心任务是分析并提出改善巴尔的摩城市交通系统的方案,特别是在交通系统的基础设施和公共交通方面进行改进。巴尔的摩面临着由老化基础设施和不完善的公共交通系统造成的交通拥堵问题,并且近期发生了重要桥梁(Francis Scott Key Bridge)坍塌,进一步影响了交通流动。该问题不仅涉及交通网络的建设和优化,还需要考虑不同利益相关者的需求,包括城市居民、企业主、通勤者、游客等。

解决该问题需要建立交通网络模型,模拟不同项目的影响,例如桥梁的重建、公交系统的改进、以及其他基础设施的更新。模型需要能够处理地理信息、交通流量数据、以及不同利益群体的需求,同时考虑如何通过数据分析来优化交通设施布局和资源分配。

E题:农业生态系统模型

本题涉及对生态系统的建模,特别是在农业系统中,如何通过自然过程和人类干预(如农药使用)来影响生态平衡。生态系统是一个复杂的动态系统,需要考虑不同物种的交互作用、农业生产周期、气候变化等因素。

C君推荐的建模过程:首先需要构建一个基于物种相互作用的生态模型,使用Lotka-Volterra方程等经典的生态学模型来描述不同物种之间的相互作用。然后,结合农业生产周期(如作物种植季节、农药使用周期等)来模拟农业生态系统的演变。为了更好地模拟生态系统的动态变化,推荐使用系统动力学模型(System Dynamics, SD)来捕捉农业系统中的反馈机制。

推荐的算法有:考虑到该问题涉及大量的生态模拟,推荐使用深度强化学习(Deep Reinforcement Learning, DRL)来优化农业管理策略。DRL可以模拟生态系统中的决策过程,帮助农民在变化的环境条件下作出最优决策。同时,结合神经元网络的系统建模方法,可以对农业系统进行非线性建模,提高预测准确度。

F题:网络安全政策的有效性分析

本题要求分析不同国家的网络安全政策,通过数据驱动的分析发现有效的安全策略。随着网络攻击日益复杂,政策制定者需要依赖数据分析来识别哪些政策能够有效减少网络攻击的发生。

C君推荐的建模过程:首先,需要收集网络安全事件、政策实施情况和国家经济、技术水平等数据。然后,应用聚类分析来识别具有相似网络安全威胁和防范策略的国家。接着,可以使用深度学习模型(如卷积神经网络和自编码器)进行异常检测,识别出网络攻击事件中的潜在模式和趋势。

推荐使用图卷积网络(GCN)来对不同国家的网络安全政策进行建模。GCN能够有效地从图结构数据中提取信息,在此问题中,可以模拟国家间政策的影响和跨国网络攻击的传播模式。此外,生成对抗网络(GAN)也可以用于生成合成数据,增强网络攻击模式的多样性,从而提升模型的鲁棒性。

总体而言本次美赛的赛题不算很难,没有出现很怪的题目。没有数据的需要额外去寻找一些数据作为建模支撑。综合以上,根据专业来给大家做一个总结的话就是:

  • 数据分析类的学生:建议选择C题(奥林匹克奖牌表模型)或F题(网络安全政策的有效性分析)。这两个问题都涉及大量的历史数据分析和预测建模,适合具备数据处理和分析能力的学生。
  • 对工程和城市规划有兴趣的学生:可以选择D题,因为它涉及到复杂的交通网络建模和优化,适合有一定算法基础的学生。
  • 环境和农业方向的学生:E题适合喜欢研究生态学和农业可持续性的学生,通过模拟和优化模型分析农业系统。
  • 对历史和社会学感兴趣的学生:A题(楼梯磨损分析)更注重实际场景中的数据采集与历史推测,适合较为细致的建模和问题分析。
  • 如需第一时间获得资料和其他相关内容,可以点击文末卡片了解详情
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值