2025深圳杯&东三省数学建模竞赛选题建议+初步分析

完整内容请看文章最下面的推广群

2025深圳杯&东三省数学建模选题建议+初步分析

首先吐槽一句,今年为了规避AI对数模竞赛的冲击,深圳杯的整体难度相较往年更高,C君作数模5年见过最难的一次比赛。

提示:C君认为的难度和开放度评级如下:(注意:深圳杯难度较大,如果您参加的是东三省,请选择相对简单的题目进行作答为宜)

难度:A>C>B=D,开放度:D=B>A=C。原因如下:​A题需多物理场建模(热弹性+结构力学),且需要结合仿真工具,专业门槛高。D题依赖生物数据的复杂特征提取和降噪,需处理高噪声混合信号。B题和C题以数学建模为主,但B题优化自由度更高,C题需处理电网拓扑约束。

同时,B题颜色空间转换需自定义损失函数,设计灵活性强,可结合多种优化方法。D题分析混合STR图谱的贡献者人数和比例,可尝试多种统计或机器学习模型。C题和A题约束条件明确,建模路径相对固定。

以下为ABCD题选题建议及初步分析:(要注意的是,本次选题建议会给出每道题目的题目分析、第一问建模过程和推荐算法,然后根据学生不同的专业,针对性给出选题建议)。

综合评价:

  • ​A题​:专业性强,适合有工程建模经验的团队,但数据量少,需依赖仿真工具(如COMSOL)。
  • ​B题​:开放度高,可结合机器学习和优化算法,适合数据驱动型团队。
  • ​C题​:需处理电网拓扑约束,技术文档清晰但计算量大,适合系统建模能力强的团队。
  • ​D题​:生物数据复杂且噪声高,需创新性算法设计,适合交叉学科团队。

A题:芯片热弹性物理参数估计​

A题需估计非均质结构(BGA封装)角点处的等效杨氏模量和热膨胀系数,涉及多材料耦合、热弹性形变与疲劳失效。核心难点在于:

  • ​非均质结构建模​:PCB、焊球、BGA的力学与热学参数差异显著,需建立等效模型;
  • ​多物理场耦合​:温度循环下的热膨胀与弹性形变需同步分析;
  • ​局部参数敏感性​:对角点位置的高风险区域进行参数聚焦。

C君建议的建模过程为:

推荐算法:1 物理信息神经网络(PINN)​​:将热弹性偏微分方程嵌入神经网络损失函数,直接求解等效参数;2 多尺度强化学习​:通过深度Q网络(DQN)优化材料层间交互策略,提升等效参数估计效率;3 贝叶斯参数反演​:结合马尔可夫链蒙特卡洛(MCMC)方法,量化参数不确定性。

大家可以使用这些可视化方法:

  • ​3D热力云图​:使用ParaView或PyVista展示温度场与应力场的空间分布;
  • ​参数敏感性桑基图​:通过Plotly动态展示各材料参数对等效模量的贡献路径;
  • ​多尺度仿真对比AR​:利用增强现实工具(如Unity+Vuforia)叠加宏观与微观形变结果。

此题专业性强,适合有工程建模经验的团队,但数据量少,需依赖仿真工具(如COMSOL)。

B题:LED显示屏颜色转换设计与校正

B题要求实现视频源色域(BT2020)到显示屏色域(RGB)的最小损失映射,核心难点是:

​1 色域不匹配​:目标色域超出显示设备能力,需压缩或映射;

​2 多通道优化​:四通道到五通道转换需高维空间映射;

​3 亮度-色度分离​:需保持亮度一致性同时优化色度差异。C君推荐的建模过程为:

推荐算法有:​ ​1 神经辐射场(NeRF)色域扩展​:利用NeRF隐式表示学习色域外颜色,生成可显示近似色;2 Transformer跨域对齐​:通过自注意力机制建立高维色域间语义对应关系;3 对抗生成网络(GAN)​​:训练生成器将BT2020色域投影到RGB空间,判别器约束视觉逼真度。

可视化推荐:

  • 动态色域马蹄图​:使用Matplotlib或D3.js交互展示映射前后颜色分布;
  • ​色差热力图​:基于PyQtGraph生成颜色差异的2D/3D密度图;
  • ​虚拟现实(VR)色域对比​:通过Unity+SteamVR实现沉浸式色域差异观察。

推荐计算机等相关专业的同学进行选择 CV,开放度高,可结合机器学习和优化算法,适合数据驱动型团队。

C题:分布式能源接入配电网的风险分析

C题需建立失负荷与过负荷风险模型,核心在于1 电网拓扑约束​:联络线转供需满足连通性且禁止反向送电;2 概率事件叠加​:分布式电源(DG)波动导致多故障场景耦合;3 经济-安全权衡​:风险计算需结合停电损失与过载成本。

C君推荐的建模过程为:

推荐使用​1 图神经网络(GNN)​​:学习电网拓扑特征,预测故障传播路径与风险;2 深度强化学习(DRL)​​:训练智能体动态调整联络开关,优化负荷转移策略;3 不确定性量化(UQ)​​:通过随机偏微分方程(SPDE)建模DG出力随机性。

推荐可视化:

  • ​动态拓扑风险热力图​:使用Gephi或Cytoscape展示故障传播与风险分布;
  • ​3D风险演变曲面​:利用Matplotlib或Three.js绘制容量-风险-时间的多维曲面;
  • ​交互式故障树​:通过Plotly Dash构建可点击的故障路径分析面板。

这道题目的数据处理是重中之重 大家需要认真去处理。需处理电网拓扑约束,技术文档清晰但计算量大,适合系统建模能力强的团队。

由于这篇是选题建议,就不赘述具体思路了。数据集怎么分析,可视化代码什么的,后续会更新。

5.2 下午-晚上 5.1-5.2上午 五一赛。限量论文完成5.5左右,5.10-13 

D题:法医物证多人身份鉴定问题

本题的核心任务是需从混合STR图谱推断贡献者人数、比例及基因型。

问题一的建模可以这样:

推荐算法:

  • 深度嵌入聚类(DEC)​​:联合学习特征表示与聚类中心,解决峰重叠问题;
  • ​变分自编码器(VAE)​​:生成对抗噪声的STR谱,增强鲁棒性;
  • ​注意力机制Transformer​:通过自注意力权重定位关键峰并分配贡献者。

可视化可以:

D题需生物信息学与信号处理结合,适合数据科学团队。难度适中,适合计算机、统计学、数学等相关专业的同学选择。

其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方名片获取:

A-人才吸引力评价模型研究 在世界各国和全国各地都加大争夺人才的背景下,一个城市要保持其竞争活力和创新力,必须与时俱进地但不盲目地调整相关人才吸引政策。2018深圳市将加大营商环境改革力度作为一项重要工作,以吸引更多优秀的高新企业和优秀的人才。 吸引人才最关键的是:符合人才的理想,满足人才的需求和愿望。对大多数人来说,首先关心的是“发展前景”:就业实体及其所在城市的前景,不光当前好,未来也不会很快衰落,毕竟人是要考虑“迁移成本”的;其次是收入(报酬或盈利),这方面有绝对(同行业)的和相对(同地域,平价购买力)的两种考量;再次是环境方面的因素:治安,交通,污染,教育、医疗,购物,等等。目前,这方面定性讨论多,定量研究少;定量研究中单因素的多,综合考虑的少;静态考量多,动态(时变)考量少,考虑“不可比”条件的更少。“少”的原因主要是缺乏合适的“数学模型”,使得结论既缺乏说服力,也缺乏可验证性。 你的团队的任务是: 1、通过收集相关数据、建立数学模型,量化地评价深圳市的人才吸引力水平,并尝试就深圳“加大营商环境改革力度若干措施”对人才吸引力水平的影响做出量化评价。 2.针对具体人才类别,深入分析比较深圳市与其他同类城市(如广州、杭州、厦门、苏州等)在人才吸引力上的优势与不足,给出有效提升人才吸引力的可行方案。 3.针对深圳南山区的经济技术发展特点和相关人才政策,同时考虑人才在各个发展阶段的动态需求,量化地评价深圳南山区人才吸引力水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值