从几何意义上理解逆矩阵与伴随矩阵的特征值与特征向量

矩阵、行列式、逆矩阵、伴随矩阵的几何意义

矩阵

首先要理解矩阵的作用,矩阵是一种空间变换关系,以满秩方阵A为例 [ 2 1 0 1 ] \begin{bmatrix} 2&1\\ 0&1 \end{bmatrix} [2011]
这个方阵表示将一个空间进行剪切变换,原始的 i i i [ 1 0 ] \begin{bmatrix}1\\0\end{bmatrix} [10]变为 [ 2 0 ] \begin{bmatrix}2\\0\end{bmatrix} [20],而 j j j [ 0 1 ] \begin{bmatrix}0\\1\end{bmatrix} [01]变为 [ 1 1 ] \begin{bmatrix}1\\1\end{bmatrix} [11]。想象一下这是整个空间的变化, i , j i,j i,j为其坐标系的变化。

逆矩阵

逆矩阵的作用是将空间变换恢复,例如其逆矩阵为 [ 1 − 1 0 2 ] \begin{bmatrix} 1&-1\\ 0&2 \end{bmatrix} [1012]
这个过程是将变化后的空间恢复成原始空间的样子。所以 A − 1 A = E A^{-1}A=E A1A=E(E为单位矩阵)。

行列式

行列式为在这个空间变化中,单位面积的变化,例如A的行列式为2,表示空间膨胀为原始2倍。

伴随矩阵

伴随矩阵作用和逆矩阵类似,不过在恢复的过程中,只能恢复旋转、剪切的变化,对于空间的膨胀和压缩没有恢复,反而又发生了变化,恢复后的空间是原来的 ∣ A ∣ n |A|^n An倍(原本的基向量变为 ∣ A ∣ |A| A倍),因此 A ∗ A = ∣ A ∣ E = ∣ A ∣ A − 1 A A^*A=|A|E=|A|A^{-1}A AA=AE=AA1A

同时,由于 ∣ A ∗ A ∣ = ∣ A ∣ n |A^*A|=|A|^n AA=An,就有 ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

特征值与特征向量的几何意义

特征向量是这样一种向量:在矩阵表示的空间变化过程中,方向不变的向量。例如矩阵A表示的变化中,向量 [ 1 0 ] \begin{bmatrix}1\\0\end{bmatrix} [10]和向量 [ − 1 1 ] \begin{bmatrix}-1\\1\end{bmatrix} [11]方向不变,但是其大小变为原来的2倍和1倍,这个倍数就是二者对应的特征值。

可以想象成这个空间沿着这两个特征向量方向扯成新的空间。

逆矩阵与伴随矩阵的特征值和特征向量

逆矩阵将矩阵恢复,如果矩阵A有特征值 λ \lambda λ,且 λ ≠ 0 \lambda\neq0 λ=0,则逆矩阵的特征值应为 1 λ \displaystyle \frac{1}{\lambda} λ1,毕竟恢复的过程中空间在特征向量方向拉伸多少倍就应该压缩多少倍,反之同理。

伴随矩阵则不是,他的空间大小会发生膨胀,经过恢复后,空间每个基都膨胀为原来的 ∣ A ∣ |A| A倍,每一个维度上的特征值都应该乘上行列式的值,来维持空间的这种改变,因此特征值为 ∣ A ∣ λ \displaystyle \frac{|A|}{\lambda} λA

至于特征向量,三者的空间变化可以看作是在特征向量上进行放缩的,所以都是一个特征向量。

后记

  1. 文章仅仅是从几何意义上理解,数学上推导看这篇博客:从数学上推导伴随矩阵特征值
  2. 本文只讨论满秩方阵,其他非满秩矩阵为降维矩阵,不在这里讨论(太复杂,不写了)。
  3. 如果有错误请指出,谢谢。
  • 25
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值