线性代数矩阵乘法

矩阵乘法

矩阵乘法的前提:第一个矩阵列数等于第二个矩阵的行数

矩阵乘法结果:行数等于第一个矩阵行数,列数等于第二个矩阵的列数

可以采用 七字诀:中间相等取两头

\begin{aligned} A_{34} B_{45}\end{aligned} = \left ( \right )_{35}

注意事项:

1,\begin{aligned} AB \neq BA\end{aligned}  如: \begin{aligned} A_{52} B_{23 }\end{aligned} = \left ( \right )_{52} \begin{aligned}B_{23 } A_{52}\end{aligned} \neq

如果存在\begin{aligned} AB = BA\end{aligned} ,nameA, B 可交换,同型矩阵,并且是方阵.(同型矩阵,对应矩阵元素相等)

2,\begin{aligned} AB = 0 \end{aligned} , 不等推出  A = 0 或者  B =0

3,AB = AC ,不能推出 ,B = C

矩阵的幂

\begin{aligned} A^k = \underbrace{A...A}_k \end{aligned}

1, \begin{aligned} A^{k1} A^{k2} = A^{k1+k2} \end{aligned}

2,\begin{aligned} (A^{k1}) ^{k2} = A^{k1*k2} \end{aligned}

注意事项:

1, \begin{aligned} (AB)^{k} \neq A^{k} B^{k}\end{aligned}

\begin{aligned} (AB)^{2} \neq A^{2} B^{2}\end{aligned}  \begin{aligned} (AB)^{2} = A BA B = (AB) A+ (AB) B = A^2+BA+AB +B^2 \end{aligned}

矩阵的转置

\begin{aligned} A_{23} = A^T_{32}\end{aligned}

1, \begin{aligned} (A^T)^T = A\end{aligned}

2,\begin{aligned}(AB)^T = B^TA^T \end{aligned}    \begin{aligned} (A_{1}A_{2}A_{3}A_{4})^T = A_{4}^TA_{3}^TA_{2}^TA_{1}^T\end{aligned}

行列式的转置 是方阵 矩阵不一定是方的

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值