理解为什么在泰勒公式中除以阶乘,可以通过考虑泰勒多项式的构造和导数的性质来解释。关键在于确保泰勒多项式在展开点 a a a 处的各阶导数与原函数 f ( x ) f(x) f(x) 的各阶导数相匹配。以下是详细的解释:
1. 泰勒公式的构造
泰勒公式的形式为:
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x) f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+⋯+n!f(n)(a)(x−a)n+Rn(x)
其中, R n ( x ) R_n(x) Rn(x) 是余项,表示泰勒多项式与函数 f ( x ) f(x) f(x) 之间的误差。
2. 为什么需要除以阶乘?
-
确保导数匹配:
- 泰勒多项式 P n ( x ) P_n(x) Pn(x) 的每一项 f ( k ) ( a ) k ! ( x − a ) k \frac{f^{(k)}(a)}{k!}(x - a)^k k!f(k)(a)(x−a)k 需要在 a a a 处的 k k k 阶导数与原函数 f ( x ) f(x) f(x) 的 k k k 阶导数相匹配。
- 为了实现这一点,我们需要确保对 f ( k ) ( a ) k ! ( x − a ) k \frac{f^{(k)}(a)}{k!}(x - a)^k k!f(k)(a)(x−a)k 求 k k k 阶导数时,结果为 f ( k ) ( a ) f^{(k)}(a) f(k)(a)。
-
导数的计算:
- 考虑泰勒多项式的一般形式:
P n ( x ) = ∑ k = 0 n f ( k ) ( a ) k ! ( x − a ) k P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x - a)^k Pn(x)=k=0∑nk!f(k)(a)(x−a)k - 对
f
(
k
)
(
a
)
k
!
(
x
−
a
)
k
\frac{f^{(k)}(a)}{k!}(x - a)^k
k!f(k)(a)(x−a)k 求
k
k
k 阶导数:
d k d x k ( f ( k ) ( a ) k ! ( x − a ) k ) \frac{d^k}{dx^k} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) dxkdk(k!f(k)(a)(x−a)k) - 计算过程如下:
- 第一次导数:
d d x ( f ( k ) ( a ) k ! ( x − a ) k ) = f ( k ) ( a ) k ! ⋅ k ( x − a ) k − 1 = f ( k ) ( a ) ( k − 1 ) ! ( x − a ) k − 1 \frac{d}{dx} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) = \frac{f^{(k)}(a)}{k!} \cdot k (x - a)^{k-1} = \frac{f^{(k)}(a)}{(k-1)!}(x - a)^{k-1} dxd(k!f(k)(a)(x−a)k)=k!f(k)(a)⋅k(x−a)k−1=(k−1)!f(k)(a)(x−a)k−1 - 第二次导数:
d 2 d x 2 ( f ( k ) ( a ) k ! ( x − a ) k ) = d d x ( f ( k ) ( a ) ( k − 1 ) ! ( x − a ) k − 1 ) = f ( k ) ( a ) ( k − 1 ) ! ⋅ ( k − 1 ) ( x − a ) k − 2 = f ( k ) ( a ) ( k − 2 ) ! ( x − a ) k − 2 \frac{d^2}{dx^2} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) = \frac{d}{dx} \left( \frac{f^{(k)}(a)}{(k-1)!}(x - a)^{k-1} \right) = \frac{f^{(k)}(a)}{(k-1)!} \cdot (k-1) (x - a)^{k-2} = \frac{f^{(k)}(a)}{(k-2)!}(x - a)^{k-2} dx2d2(k!f(k)(a)(x−a)k)=dxd((k−1)!f(k)(a)(x−a)k−1)=(k−1)!f(k)(a)⋅(k−1)(x−a)k−2=(k−2)!f(k)(a)(x−a)k−2 - 以此类推,直到第
k
k
k 次导数:
d k d x k ( f ( k ) ( a ) k ! ( x − a ) k ) = f ( k ) ( a ) k ! ⋅ k ! = f ( k ) ( a ) \frac{d^k}{dx^k} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) = \frac{f^{(k)}(a)}{k!} \cdot k! = f^{(k)}(a) dxkdk(k!f(k)(a)(x−a)k)=k!f(k)(a)⋅k!=f(k)(a)
- 第一次导数:
- 考虑泰勒多项式的一般形式:
-
匹配导数的必要性:
- 通过除以 k ! k! k!,我们确保在 x = a x = a x=a 处, f ( k ) ( a ) k ! ( x − a ) k \frac{f^{(k)}(a)}{k!}(x - a)^k k!f(k)(a)(x−a)k 的 k k k 阶导数为 f ( k ) ( a ) f^{(k)}(a) f(k)(a)。
- 这样,泰勒多项式 P n ( x ) P_n(x) Pn(x) 在 a a a 处的各阶导数与原函数 f ( x ) f(x) f(x) 的各阶导数相匹配,从而使得 P n ( x ) P_n(x) Pn(x) 在 a a a 附近的局部区域提供一个精确的近似。
3. 为什么泰勒公式要确保 f ( k ) ( a ) k ! ( x − a ) k \frac{f^{(k)}(a)}{k!}(x-a)^k k!f(k)(a)(x−a)k 求 k k k 阶导数时,结果为 f ( k ) ( a ) f^{(k)}(a) f(k)(a)?
-
泰勒多项式的构造:
泰勒多项式 T k ( x ) T_k(x) Tk(x) 是一个 k k k 次多项式,形式为:
T k ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( k ) ( a ) k ! ( x − a ) k T_k(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x - a)^k Tk(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+k!f(k)(a)(x−a)k即泰勒多项式只有k项,并不是无穷项,具体使用多少项,视实际情况而定。
-
导数的性质:
为了确保泰勒多项式在 x = a x = a x=a 处的导数与原函数 f ( x ) f(x) f(x) 的导数相匹配,我们需要对泰勒多项式的每一项进行 k k k 阶导数的计算。 -
逐项求导:
- 对于常数项 f ( a ) f(a) f(a),其 k k k 阶导数为 0(当 k > 0 k > 0 k>0 时)。
- 对于线性项 f ′ ( a ) ( x − a ) f'(a)(x - a) f′(a)(x−a),其 k k k 阶导数为 0(当 k > 1 k > 1 k>1 时)。
- 对于二次项 f ′ ′ ( a ) 2 ! ( x − a ) 2 \frac{f''(a)}{2!}(x - a)^2 2!f′′(a)(x−a)2,其 k k k 阶导数为 0(当 k > 2 k > 2 k>2 时)。
- 以此类推,对于 k k k 次项 f ( k ) ( a ) k ! ( x − a ) k \frac{f^{(k)}(a)}{k!}(x - a)^k k!f(k)(a)(x−a)k,其 k k k 阶导数为 f ( k ) ( a ) f^{(k)}(a) f(k)(a)。
-
具体计算:
- 考虑
k
k
k 次项
f
(
k
)
(
a
)
k
!
(
x
−
a
)
k
\frac{f^{(k)}(a)}{k!}(x - a)^k
k!f(k)(a)(x−a)k:
- 一次导数:
d d x ( f ( k ) ( a ) k ! ( x − a ) k ) = f ( k ) ( a ) k ! ⋅ k ( x − a ) k − 1 = f ( k ) ( a ) ( k − 1 ) ! ( x − a ) k − 1 \frac{d}{dx} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) = \frac{f^{(k)}(a)}{k!} \cdot k (x - a)^{k-1} = \frac{f^{(k)}(a)}{(k-1)!}(x - a)^{k-1} dxd(k!f(k)(a)(x−a)k)=k!f(k)(a)⋅k(x−a)k−1=(k−1)!f(k)(a)(x−a)k−1 - 二次导数:
d 2 d x 2 ( f ( k ) ( a ) k ! ( x − a ) k ) = f ( k ) ( a ) ( k − 1 ) ! ⋅ ( k − 1 ) ( x − a ) k − 2 = f ( k ) ( a ) ( k − 2 ) ! ( x − a ) k − 2 \frac{d^2}{dx^2} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) = \frac{f^{(k)}(a)}{(k-1)!} \cdot (k-1) (x - a)^{k-2} = \frac{f^{(k)}(a)}{(k-2)!}(x - a)^{k-2} dx2d2(k!f(k)(a)(x−a)k)=(k−1)!f(k)(a)⋅(k−1)(x−a)k−2=(k−2)!f(k)(a)(x−a)k−2 - 以此类推,直到
k
k
k 次导数:
d k d x k ( f ( k ) ( a ) k ! ( x − a ) k ) = f ( k ) ( a ) k ! ⋅ k ! ( x − a ) 0 = f ( k ) ( a ) \frac{d^k}{dx^k} \left( \frac{f^{(k)}(a)}{k!}(x - a)^k \right) = \frac{f^{(k)}(a)}{k!} \cdot k! (x - a)^0 = f^{(k)}(a) dxkdk(k!f(k)(a)(x−a)k)=k!f(k)(a)⋅k!(x−a)0=f(k)(a)
- 一次导数:
- 考虑
k
k
k 次项
f
(
k
)
(
a
)
k
!
(
x
−
a
)
k
\frac{f^{(k)}(a)}{k!}(x - a)^k
k!f(k)(a)(x−a)k:
-
确保匹配:
通过上述计算,我们可以看到,泰勒多项式 T k ( x ) T_k(x) Tk(x) 的 k k k 次项在 x = a x = a x=a 处的 k k k 阶导数确实为 f ( k ) ( a ) f^{(k)}(a) f(k)(a)。这确保了泰勒多项式在 x = a x = a x=a 处的导数与原函数 f ( x ) f(x) f(x) 的导数相匹配,从而使得泰勒多项式在 x = a x = a x=a 附近能够很好地近似原函数 f ( x ) f(x) f(x)。
4. 总结
除以阶乘是为了确保泰勒多项式在展开点 a a a 处的各阶导数与原函数 f ( x ) f(x) f(x) 的各阶导数相匹配。通过这种方式,泰勒多项式能够在 a a a 附近的局部区域提供一个精确的近似。这是泰勒公式的核心思想之一,使得泰勒公式在许多数学和科学领域中非常有用。