理解时变信道特征,以及相干时间、相干带宽的理论说明

从不确定性原理出发,理解时变信道特征,以及相干时间、相干带宽的理论说明

1.海森堡不确定性原理

1.1 海森堡不确定性原理

不确定性原理是量子力学的产物,不确定性原理并不是由于测量导致的,它是粒子的固有性质,并不依赖于任何测量。虽然我们的讲解这里并没有涉及到粒子的概念,但是借助量子力学中的位置表征和动量表征,我们可以轻而易举地类比信号与系统中的时频概念。

海森堡不确定性原理
在量子力学里,不确定性原理表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式
σ x σ p ≥ ℏ 2 \sigma_x \sigma_p \geq \frac{\hbar}{2} σxσp2

我们对上述不等式做解释:关于位置和动量的不确定关系:我们可以找到一个角度“看清”粒子的位置,让测量时粒子的位置有确定值,这时候位置的标准差 σ x \sigma_x σx最小(位置本征态);也可以找一个角度“看清”粒子的动量,让测量时粒子的动量有确定值,这时候动量的标准差 σ p \sigma_p σp最小(动量本征态)。但是,你找不到一个角度能同时“看清”粒子的位置和动量,让位置的标准差 σ x \sigma_x σx和动量的标准差 σ p \sigma_p σp同时达到最小值(无法同时处于位置和动量的本征态),它们之间有 σ x σ p ≥ ℏ 2 \sigma_x \sigma_p \geq \frac{\hbar}{2} σxσp2这样一个绕不过去的门槛。

1.2 位置-动量表象 → \rightarrow 类比到 → \rightarrow 时间-频率域

位置表象 Φ ( x , t ) \Phi(x,t) Φ(x,t)与动量表象 c ( p x , t ) c(p_x,t) c(px,t)的傅里叶变换关系:
c ( p x , t ) = 1 2 π ℏ ∫ − ∞ ∞ Φ ( x , t ) exp ⁡ ( − i ℏ p x x ) d x Φ ( x , t ) = 1 2 π ℏ ∫ − ∞ ∞ c ( p x , t ) exp ⁡ ( − i ℏ p x x ) d p x c(p_x,t) = \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \Phi(x,t) \exp \left ( -\frac{i}{\hbar} p_x x \right) \text{d}x \\ \Phi(x,t)= \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} c(p_x,t) \exp \left ( -\frac{i}{\hbar} p_x x \right) \text{d}p_x c(px,t)=2π 1Φ(x,t)exp(ipxx)dxΦ(x,t)=2π 1c(px,t)exp(ipxx)dpx

我们对位置-动量表象的不确定性原理举例说明:考虑位置算符的本征方程
x ^ ϕ ( x ) = x 0 ϕ ( x ) ⇒ ϕ ( x ) = δ ( x − x 0 ) \hat{x} \phi(x) = x_0 \phi(x) \Rightarrow \phi(x) = \delta(x-x_0) x^ϕ(x)=x0ϕ(x)ϕ(x)=δ(xx0)

得到位置算符的本征函数为 δ ( x − x 0 ) \delta(x-x_0) δ(xx0),因此可以得到,当粒子处于位置本征态时,标准差 σ x → 0 \sigma_x \rightarrow 0 σx0,我们测量粒子的位置具有确定的值,而此时的动量表象为 1 / 2 π ℏ exp ⁡ ( − i ℏ p x x ) 1/\sqrt{2 \pi \hbar} \exp \left ( -\frac{i}{\hbar} p_x x \right) 1/2π exp(ipxx),这时候,我们通过傅里叶变换切换到动量视角,就会发现对应的图像是一个平面波,它说明粒子取任何动量值的概率都一样,这样动量就完全不确定了

说明:动量表象是位置表象的傅里叶变换,位置表象是动量表象的傅里叶变换,这与时间与频率的关系是一致的,所以我们把对关于位置-动量表象的不确定性原理应用到时频关系中,这里我们先简单描述为:

不确定性结论:

  • 在时间上确定延时 δ ( τ − τ 0 ) \delta (\tau-\tau_0) δ(ττ0),频域上(注意这里的频域是相对于延时 τ \tau τ)表现为 exp ⁡ ( − i 2 π f τ 0 ) \exp (-i 2 \pi f\tau_0) exp(i2πfτ0),取任意 f f f的概率是一样的,没有任何偏差。
  • 在频域(这里的频域专指对应多普勒的频域,可以称为多普勒域)上确定多普勒 δ ( 2 π ( ν − ν D ) ) \delta (2 \pi (\nu- \nu_D)) δ(2π(ννD)),在时域上表现为 exp ⁡ ( i 2 π ν D t ) \exp (i 2 \pi \nu_D t) exp(i2πνDt),取任意 t t t的概率是一样的,没有任何偏差。

我们形象地解释时间和频率的不确定性原理:如上图所示,同样两个正弦波,当我们从正面看的时候,它是一些波叠在一起的;当你从侧面看时,它就变成了两个尖尖,只在两个地方有取值。你从正面看到的是波,从侧面看到的是点,但你无法找到一个角度让你既看到波又看到点,波和点之间就差了一个傅里叶变换。

2.不同域的信道系统响应与输入输出关系

我们最常见的线性时变系统为
r ( t ) = ∫ 0 τ max ⁡ h ( t , τ ) x ( t − τ ) d τ (1) r(t) = \int_{0}^{\tau_{\max_{}}} h(t,\tau)x(t-\tau) d \tau \tag{1} r(t)=0τmaxh(t,τ)x(tτ)dτ(1)

其中 x ( t ) x(t) x(t)是发送信号, r ( t ) r(t) r(t)是接收信号, h ( t , τ ) h(t,\tau) h(t,τ)是时变的脉冲响应(time-varying impulse response),作用在时域和延时域。下面我们以启发式的方式扩展信道在不同域下的系统响应。
发送信号 x ( t ) x(t) x(t)可以表示为( X ( f ) X(f) X(f)的逆傅里叶变换)
x ( t ) = ∫ d f X ( f ) exp ⁡ ( i 2 π f t ) (2) x(t) = \int df X(f) \exp(i 2 \pi f t) \tag{2} x(t)=dfX(f)exp(i2πft)(2)

我们从线性组合的角度看待上式, x ( t ) x(t) x(t)可以看作是 { exp ⁡ ( i 2 π f t ) } f \{\exp(i 2 \pi f t)\}_f {exp(i2πft)}f的线性组合,相应的系数为 d f X ( f ) dfX(f) dfX(f),又因为 x ( t ) x(t) x(t)所要经过的系统是线性的,所以 x ( t ) x(t) x(t)经过线性时变系统可以被分解为 exp ⁡ ( i 2 π f t ) \exp(i 2 \pi f t) exp(i2πft)经过该系统的线性组合。我们知道,线性时不变系统的特征函数为 exp ⁡ ( s t ) \exp(st) exp(st)的指数形式,启发式地思考, exp ⁡ ( i 2 π f t ) \exp(i 2 \pi f t) exp(i2πft)经过线性时变系统 H t \mathcal H_t Ht会不会有什么结论?下面就此展开
H t [ exp ⁡ ( i 2 π f t ) ] = ∫ 0 τ max ⁡ h ( t , τ ) x ( t − τ ) d τ = ∫ 0 τ max ⁡ exp ⁡ ( i 2 π f ( t − τ ) ) h ( t , τ ) d τ = exp ⁡ ( i 2 π f t ) ∫ 0 τ max ⁡ h ( t , τ ) exp ⁡ ( − i 2 π f τ ) d τ = exp ⁡ ( i 2 π f t ) H ( t , f ) (3) \begin{aligned} \mathcal{H}_t \left [\exp(i 2 \pi f t) \right ] &= \int_{0}^{\tau_{\max_{}}} h(t,\tau)x(t-\tau) d \tau \\ & = \int_{0}^{\tau_{\max_{}}} \exp \left(i 2 \pi f (t-\tau) \right) h(t,\tau) d \tau \\ & = \exp \left(i 2 \pi f t \right) \int_{0}^{\tau_{\max_{}}} h(t,\tau) \exp \left(-i 2 \pi f \tau \right) d \tau \\ & = \exp \left(i 2 \pi f t \right) H(t,f) \tag{3} \end{aligned} Ht[exp(i2πft)]=0τmaxh(t,τ)x(tτ)dτ=0τmaxexp(i2πf(tτ))h(t,τ)dτ=exp(i2πft)0τmaxh(t,τ)exp(i2πfτ)dτ=exp(i2πft)H(t,f)(3)

显然,其中 H ( t , f ) H(t,f) H(t,f) h ( t , τ ) h(t,\tau) h(t,τ)关于延时 τ \tau τ的傅里叶变换,即
H ( t , f ) = ∫ 0 τ max ⁡ h ( t , τ ) exp ⁡ ( − i 2 π f τ ) d τ (4) H(t,f) = \int_{0}^{\tau_{\max_{}}} h(t,\tau) \exp \left(-i 2 \pi f \tau \right) d \tau \tag{4} H(t,f)=0τmaxh(t,τ)exp(i2πfτ)dτ(4)

本质上,式(2)式(3)的过程也说明了为什么信道的频域对应于延时 τ \tau τ,而不是时间 t t t,这里要着重注意,避免将时间 t t t与信道的频域相对应(这也是我最初的疑惑)。我们称 H ( t , f ) H(t,f) H(t,f)为时变频率响应(time-varying frequency response),直观地将上述经过线性时变系统(信道)的输入输出关系表示为

重新回到式(2)表征的线性组合形式,我们可以得到如下线性组合形式
r ( t ) = H t [ x ( t ) ] = ∫ d f X ( f ) H t [ exp ⁡ ( i 2 π f t ) ] = ∫ X ( f ) H ( t , f ) exp ⁡ ( i 2 π f t ) d f (5) \begin{aligned} r(t) & = \mathcal{H}_t \left [ x(t) \right] \\ & = \int df X(f) \mathcal{H}_t \left [ \exp(i 2 \pi f t) \right] \\ & = \int X(f) H(t,f) \exp \left(i 2 \pi f t \right) df \end{aligned} \tag{5} r(t)=Ht[x(t)]=dfX(f)Ht[exp(i2πft)]=X(f)H(t,f)exp(i2πft)df(5)

至此,我们能写出接受信号与两种系统响应的关系,分别是时变脉冲响应(对应时间-延时域)和时变频率响应(对应时间-频率域):
r ( t ) = ∫ 0 τ max ⁡ h ( t , τ ) x ( t − τ ) d τ = ∫ X ( f ) H ( t , f ) exp ⁡ ( i 2 π f t ) d f (7 ) \begin{aligned} r(t) &= \int_{0}^{\tau_{\max_{}}} h(t,\tau)x(t-\tau) d \tau \\ & = \int X(f) H(t,f) \exp \left(i 2 \pi f t \right) df \tag{7 } \end{aligned} r(t)=0τmaxh(t,τ)x(tτ)dτ=X(f)H(t,f)exp(i2πft)df(7 )

因为 H ( t , f ) H(t,f) H(t,f) h ( t , τ ) h(t,\tau) h(t,τ)关于延时 τ \tau τ的傅里叶变换,我们以此做扩展,可以得到多普勒-频域与多普勒-延时域的系统响应
G ( ν , f ) = ∫ − ν max ⁡ / 2 ν max ⁡ / 2 H ( t , f ) exp ⁡ ( − i 2 π ν t ) d t ,    H ( t , f ) = ∫ G ( ν , f ) exp ⁡ ( i 2 π ν t ) d ν , C ( ν , τ ) = ∫ h ( t , τ ) exp ⁡ ( − i 2 π ν t ) d t ,    h ( t , τ ) = ∫ − ν max ⁡ / 2 ν max ⁡ / 2 C ( ν , τ ) exp ⁡ ( i 2 π ν t ) d ν (9) \begin{aligned} G(\nu,f) =\int_{-\nu_{\max}/2}^{\nu_{\max}/2} H(t,f)\exp \left ( -i 2 \pi \nu t \right) dt &, \ \ H(t,f)=\int G(\nu,f)\exp \left ( i 2 \pi \nu t \right) d \nu, \\ C(\nu,\tau) =\int h(t,\tau) \exp \left ( -i 2 \pi \nu t \right) dt &, \ \ h(t,\tau)=\int_{-\nu_{\max}/2}^{\nu_{\max}/2} C(\nu,\tau)\exp \left ( i 2 \pi \nu t \right) d \nu \tag{9} \end{aligned} G(ν,f)=νmax/2νmax/2H(t,f)exp(i2πνt)dtC(ν,τ)=h(t,τ)exp(i2πνt)dt,  H(t,f)=G(ν,f)exp(i2πνt)dν,,  h(t,τ)=νmax/2νmax/2C(ν,τ)exp(i2πνt)dν(9)

我们称 C ( ν , τ ) C(\nu,\tau) C(ν,τ)为在延时域多普勒域的延时-多普勒扩展函数(Delay-Doppler Spreading function),不同域之间的连接关系如下图所示

不同域下,系统响应的转换关系如下图所示, F \mathcal{F} F表示一层傅里叶变换关系, F [ F ] \mathcal{F} \left [ \mathcal{F} \right ] F[F]表示两层傅里叶变换关系

延续式(6)、式(7),我们得到输入-输出与不同域系统响应的关系为:
r ( t ) = ∫ 0 τ max ⁡ h ( t , τ ) x ( t − τ ) d τ = ∫ 0 τ max ⁡ ∫ − ν max ⁡ / 2 ν max ⁡ / 2 C ( ν , τ ) x ( t − τ ) exp ⁡ ( i 2 π ν t ) d ν d t = ∫ X ( f ) H ( t , f ) exp ⁡ ( i 2 π f t ) d f = ∫ ∫ − ν max ⁡ / 2 ν max ⁡ / 2 X ( f ) G ( ν , f ) exp ⁡ ( − i 2 π ν t ) exp ⁡ ( i 2 π f t ) d ν d f (13) \begin{aligned} r(t) &= \int_{0}^{\tau_{\max_{}}} h(t,\tau)x(t-\tau) d \tau \\ & = \int_{0}^{\tau_{\max}} \int_{-\nu_{\max}/2}^{\nu_{\max}/2} C(\nu, \tau) x(t - \tau) \exp \left ( i 2 \pi \nu t \right) d \nu d t \\ & = \int X(f) H(t,f) \exp \left(i 2 \pi f t \right) df \\ & = \int \int_{-\nu_{\max}/2}^{\nu_{\max}/2} X(f) G(\nu,f) \exp \left ( -i 2 \pi \nu t \right) \exp \left ( i 2 \pi f t \right) d \nu d f \tag{13} \end{aligned} r(t)=0τmaxh(t,τ)x(tτ)dτ=0τmaxνmax/2νmax/2C(ν,τ)x(tτ)exp(i2πνt)dνdt=X(f)H(t,f)exp(i2πft)df=νmax/2νmax/2X(f)G(ν,f)exp(i2πνt)exp(i2πft)dνdf(13)

3. 连续模型 → \rightarrow 离散多径

3.1 基于不确定性原理,直接写出不同域的系统响应函数

首先考虑多普勒-延时域的系统响应函数:延时-多普勒扩展函数 C ( ν , τ ) C(\nu,\tau) C(ν,τ)。在延时域,我们认为不同径的延时对于信道本身来说是确定的,类似地,在多普勒域,我们也认为不同径的多普勒频移对于信道本身也是确定的,所以可以认为时延处在时延域的“本征态”,多普勒频移处在多普勒域的“本征态”。因此可以直接写出延时-多普勒扩展函数为
C ( ν , τ ) = ∑ n = 1 N p β n δ ( τ − τ n ) δ ( ν − ν n ) (14) C(\nu,\tau) = \sum_{n=1}^{N_p} \beta_n \delta(\tau - \tau_n) \delta(\nu - \nu_n) \tag{14} C(ν,τ)=n=1Npβnδ(ττn)δ(ννn)(14)

其中 N p N_p Np是收发端的多径数量, τ n \tau_n τn是第 n n n条径的延时, ν n \nu_n νn是第 n n n条径的多普勒频移,特别地, β n = α n e i ϕ n \beta_n=\alpha_n e^{i \phi_n} βn=αneiϕn,其中 α n \alpha_n αn是第 n n n条径的增益, ϕ n \phi_n ϕn是信道第 n n n条径引起的相偏(可以认为是信道的固有属性)。一般地,我们认为 N p N_p Np { α n , τ n , ν n } \{\alpha_n,\tau_n,\nu_n\} {αn,τn,νn}是确定但是未知的,但 { ϕ n } \{\phi_n\} {ϕn}是随机变量,均匀分布在 [ − π , π ] [-\pi,\pi] [π,π]上,且不同径之间相互独立。

基于不确定性原理,既然已经知道时延处在时延域的“本征态”,多普勒频移处在多普勒域的“本征态”,那么对应到其对偶域(延时域对应频域,多普勒域对应时域),频率成分和多普勒偏移应以“平面波”的形式存在,即频域上取任意 f f f的概率都一样,没有任何偏差,时域同理,所以我们可以直接写出时变频率响应 H ( t , f ) H(t,f) H(t,f)
H ( t , f ) = ∑ n = 1 N p β n exp ⁡ ( − i 2 π τ n f ) exp ⁡ ( i 2 π ν n t ) (15) H(t,f)=\sum_{n=1}^{N_p} \beta_n \exp(-i 2 \pi \tau_n f) \exp({i 2 \pi \nu_n t}) \tag{15} H(t,f)=n=1Npβnexp(i2πτnf)exp(i2πνnt)(15)

H ( t , f ) H(t,f) H(t,f)表达式可以看出,信道的时变特性是由多普勒频移 { ν n } \{\nu_n\} {νn}决定的(在时域上变化有多快),信道随频率变化的特性是由延时决定的(在频域上变化有多快)。而类似地在其他域的系统响应对式(14)和式(15)做傅里叶变换即可。另外,这里要说明,本质上式(14)和式(15)也是傅里叶变换关系,但是为了深入理解其潜在的物理意义,这里借用了不确定性原理进行说明和类比。

基于式(13)和式(14),我们可以进一步显示地写出输入信号 x ( t ) x(t) x(t)与输出信号 r ( t ) r(t) r(t)之间的显示关系:
r ( t ) = ∫ 0 τ max ⁡ ∫ − ν max ⁡ / 2 ν max ⁡ / 2 C ( ν , τ ) x ( t − τ ) exp ⁡ ( i 2 π ν t ) d ν d t = ∫ 0 τ max ⁡ ∫ − ν max ⁡ / 2 ν max ⁡ / 2 ∑ n = 1 N p β n δ ( τ − τ n ) δ ( ν − ν n ) x ( t − τ ) exp ⁡ ( i 2 π ν t ) d ν d t = ∑ n = 1 N p β n x ( t − τ n ) exp ⁡ ( i 2 π ν n t ) (16) \begin{aligned} r(t) & = \int_{0}^{\tau_{\max}} \int_{-\nu_{\max}/2}^{\nu_{\max}/2} C(\nu, \tau) x(t - \tau) \exp \left ( i 2 \pi \nu t \right) d \nu d t \\ & = \int_{0}^{\tau_{\max}} \int_{-\nu_{\max}/2}^{\nu_{\max}/2} \sum_{n=1}^{N_p} \beta_n \delta(\tau - \tau_n) \delta(\nu - \nu_n) x(t - \tau) \exp \left ( i 2 \pi \nu t \right) d \nu d t \\ & = \sum_{n=1}^{N_p} \beta_n x(t - \tau_n) \exp \left ( i 2 \pi \nu_n t \right) \tag{16} \end{aligned} r(t)=0τmaxνmax/2νmax/2C(ν,τ)x(tτ)exp(i2πνt)dνdt=0τmaxνmax/2νmax/2n=1Npβnδ(ττn)δ(ννn)x(tτ)exp(i2πνt)dνdt=n=1Npβnx(tτn)exp(i2πνnt)(16)

从式(16)可以看出,接受信号 r ( t ) r(t) r(t)是原始信号 x ( t ) x(t) x(t)延时和多普勒频移后的线性组合。

4. 相干时间、相干带宽的理论解释和说明

因为多径效应,我们把信道理解为一个随机系统。为了描述信道在时间域和频率域的变化特征,这里我们考虑宽平稳的不相关散射(Wide-sense-stationary uncorrelated scattering, WSSUS)信道模型,将信道的时变频响 H ( t , f ) H(t,f) H(t,f)视为二维的宽平稳过程(二维指时间维和频率维),那么这两个维度的相关函数可以表示为:
R H ( Δ t , Δ f ) = E [ H ( t + Δ t , f + Δ f ) H ∗ ( t , f ) ] (17) R_H(\Delta t , \Delta f)= \mathbb{E} \left [ H(t+\Delta t, f + \Delta f) H^{*}(t,f) \right] \tag{17} RH(Δt,Δf)=E[H(t+Δt,f+Δf)H(t,f)](17)

另外,延时-多普勒扩展函数 C ( ν , τ ) C(\nu,\tau) C(ν,τ) H ( t , f ) H(t,f) H(t,f)在两个维度的傅里叶变换,随机变量 ν \nu ν τ \tau τ各自不相关,因此
E [ C ( ν 1 , τ 1 ) C ∗ ( ν 2 , τ 2 ) ] = Φ C ( ν 1 , τ 1 ) δ ( ν 1 − ν 2 ) δ ( τ 1 − τ 2 ) (18) \mathbb{E} \left [ C(\nu_1,\tau_1) C^*(\nu_2,\tau_2) \right] = \varPhi_C(\nu_1,\tau_1) \delta(\nu_1-\nu_2) \delta(\tau_1 - \tau_2) \tag{18} E[C(ν1,τ1)C(ν2,τ2)]=ΦC(ν1,τ1)δ(ν1ν2)δ(τ1τ2)(18)

其中 Φ C ( ν , τ ) ≥ 0 \varPhi_C(\nu,\tau) \geq 0 ΦC(ν,τ)0 被称为延时-多普勒散射函数(Delay-Doppler scattering function)。我们可以把 Φ C ( ν , τ ) \varPhi_C(\nu,\tau) ΦC(ν,τ)理解为两个维度下的功率谱密度。又因为功率谱密度与自相关函数呈傅里叶变换关系,所以有
R H ( Δ t , Δ f ) = ∫ ∫ Φ C ( ν , τ ) exp ⁡ ( i 2 π Δ t ν ) exp ⁡ ( − i 2 π Δ f τ ) d ν d τ → ∑ n = 1 N p Φ C ( ν n , τ n ) exp ⁡ ( i 2 π Δ t ν n ) exp ⁡ ( − i 2 π Δ f τ n ) (20) \begin{aligned} R_H(\Delta t , \Delta f) &= \int \int \varPhi_C(\nu,\tau) \exp \left ( i 2 \pi \Delta t \nu \right) \exp \left ( -i 2 \pi \Delta f \tau \right) d\nu d \tau \\ & \rightarrow \sum_{n=1}^{N_p} \varPhi_C(\nu_n,\tau_n) \exp \left ( i 2 \pi \Delta t \nu_n \right) \exp \left ( -i 2 \pi \Delta f \tau_n \right) \tag{20} \end{aligned} RH(Δt,Δf)=ΦC(ν,τ)exp(i2πΔtν)exp(i2πΔfτ)dνdτn=1NpΦC(νn,τn)exp(i2πΔtνn)exp(i2πΔfτn)(20)

为了叙述方便,我们把式(20)分解为两个部分考虑:时不变和频不变
(1)时不变
时不变对应的分解是为了得到相干带宽,即得到相关性较强的频带范围 Δ f c o \Delta f_{co} Δfco。对于相干带宽,主流的参考书中有两种相似但是略有差异的介绍,为了方便说明,我们将其分别命名为强相干带宽和弱相干带宽【只是我起的名字,学术界并没有类似称呼:)】。由式(20)可得
R H ( Δ f ) = ∑ n = 1 N p Φ C ( τ n ) exp ⁡ ( − i 2 π Δ f τ n ) (21) R_H( \Delta f)= \sum_{n=1}^{N_p} \varPhi_C(\tau_n) \exp \left ( -i 2 \pi \Delta f \tau_n \right) \tag{21} RH(Δf)=n=1NpΦC(τn)exp(i2πΔfτn)(21)上式可以理解为 R H ( Δ f ) R_H( \Delta f) RH(Δf)是多个含 { τ n } \{\tau_n\} {τn}项的线性组合,复指数中的项 − 2 π Δ f τ n - 2 \pi \Delta f \tau_n 2πΔfτn表示相位变化。记最大延时为 τ max ⁡ \tau_{\max} τmax,最小延时为 τ min ⁡ \tau_{\min} τmin

  • 强相关带宽:不难发现,当 Δ f τ max ⁡ ≪ 1 \Delta f \tau_{\max} \ll 1 Δfτmax1时,最大的相位改变几乎没变化或者变化程度很少,且这时 R H ( Δ f ) R_H( \Delta f) RH(Δf)在满足 Δ f τ max ⁡ ≪ 1 \Delta f \tau_{\max} \ll 1 Δfτmax1时呈现较强的相关性(也就是所谓的coherent),因为对应的相位趋于0。我们称这个频带为强相干带宽。这是一种定性描述,为了方便有的书会定量描述为
    Δ f c o = 1 τ max ⁡ (22) \Delta f_{co} = \frac{1}{\tau_{\max}} \tag{22} Δfco=τmax1(22)

  • 弱相干带宽:与强相干不同,弱相干承认延时会带来一定的相位改变,即 2 π Δ f τ min ⁡ > 0 2 \pi \Delta f \tau_{\min} > 0 2πΔfτmin>0,但是“寄希望于”从 τ min ⁡ \tau_{\min} τmin τ max ⁡ \tau_{\max} τmax这个延时扩展过程的相位变化趋于0,即 Δ f ( τ max ⁡ − τ min ⁡ ) ≪ 1 \Delta f(\tau_{\max} - \tau_{\min}) \ll 1 Δf(τmaxτmin)1,这时 R H ( Δ f ) R_H( \Delta f) RH(Δf)在满足该条件时呈现一定的相关性因为存在一定的初始相位变化。我们称这个频带为弱相干带宽。这是一种定性描述,为了方便有的书会定量描述为
    Δ f c o = 1 2 ∣ τ max ⁡ − τ min ⁡ ∣ (23) \Delta f_{co} = \frac{1}{2|\tau_{\max}-\tau_{\min}|} \tag{23} Δfco=2τmaxτmin1(23)

无论是定性定量,还是式(22)或式(23)的不同相干带宽表达式,重要的是理解相干带宽与延时或延时扩展呈反比关系。

(2)频不变
频不变对应的分解是为了得到相干时间,即相关性最强的时间范围 Δ t c o \Delta t_{co} Δtco,由式(20)可得
R H ( Δ t ) = ∑ n = 1 N p Φ C ( ν n ) exp ⁡ ( i 2 π Δ t ν n ) (24) R_H( \Delta t)= \sum_{n=1}^{N_p} \varPhi_C(\nu_n) \exp \left ( i 2 \pi \Delta t \nu_n \right)\tag{24} RH(Δt)=n=1NpΦC(νn)exp(i2πΔtνn)(24)

与(1)类似,同样的道理,我们也可以得到强相干时间和弱相干时间

  • 强相干时间
    Δ t c o = 1 ν max ⁡ (25) \Delta t_{co} = \frac{1}{\nu_{\max}} \tag{25} Δtco=νmax1(25)

  • 弱相干时间
    Δ t c o = 1 4 ( ν max ⁡ − ν min ⁡ ) (26) \Delta t_{co} = \frac{1}{4(\nu_{\max} - \nu_{\min})} \tag{26} Δtco=4(νmaxνmin)1(26)

我们要注意,上述表达式前的系数在不同参考书中可能不同,但是真正重要的是相干时间是由多普勒决定的,且与多普勒频移或多普勒扩展成反比。

参考

[1] Tse, D., & Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511807213
[2] Simon Haykin and K.J. Ray Liu. 2010. Handbook on Array Processing and Sensor Networks. Wiley-IEEE Press.
[3] P. Bello, “Characterization of Randomly Time-Variant Linear Channels,” in IEEE Transactions on Communications Systems, vol. 11, no. 4, pp. 360-393, December 1963, doi: 10.1109/TCOM.1963.1088793.
[4] 中科院高能所公众号

  • 10
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值