SCMA基本原理介绍

SCMA是一种非正交多址接入技术,其码字在频域上是稀疏的,允许多个用户共享相同的资源元素。每个用户有特定的非零元素位置,码字的稀疏度决定了信息传输的效率。SCMA系统的因子图矩阵和映射矩阵是其关键特征,用于描述用户码字的结构和非零位置。这种技术在5G通信中具有潜力,因为它能有效提高频谱效率并支持大规模连接。
摘要由CSDN通过智能技术生成

SCMA: Sparse Code Multiple Access

SCMA基本原理

我们考虑一个同步(synchronous)的SCMA系统,

  • 含1个基站(Base Station, BS);
  • J J J个用户(so called layers);
  • K个OFDM子载波(so called REs)。

用户 j j j发送的码字 x j ∈ C K × 1 \boldsymbol x_j \in \mathbb C^{K \times 1} xjCK×1,其中 x j \boldsymbol x_j xj是从集合 C j \boldsymbol C_j Cj中选取的,集合 C j \boldsymbol C_j Cj一共有 M j M_j Mj个码字,因此用户 j j j发送一个码字可以传输 log ⁡ 2 M j \log_2{M_j} log2Mj个比特。注意到SCMA的码字是稀疏的,即仅有 N j ≪ K N_j \ll K NjK个RE上的符号是非零的,其它都为零,我们把 N j N_j Nj称为码字的稀疏度(codebook sparsity degree)。

SCMA的关键特征:给定用户 j j j对应的所有码字,这些码字非零元素对应的位置都是一致的,且相较于其他用户是唯一的。(The sparsity key of SCMA that all codewords corresponding to the j th j^{\text{th}} jth SCMA layer (user) have a unique location of nonzero entries at the same ( K − N j ) (K-N_j) (KNj) positions.)

Note:A regular SCMA system is defined by
N j = N ,    1 ≤ j ≤ J M j = M ,    1 ≤ j ≤ J N_j = N, \ \ 1 \leq j \leq J \\ M_j = M, \ \ 1 \leq j \leq J Nj=N,  1jJMj=M,  1jJ

一个regular SCMA系统如下图所示。其中,码字的维数 K = 4 K=4 K=4,码字空间大小 M j = 4 , ∀ j M_j=4, \forall j Mj=4,j,用2个RE来承载符号,即 N j = 2 , ∀ j N_j = 2, \forall j Nj=2,j

在这里插入图片描述

Define

  • The maximum degree of user superposition on a given RE: d f d_f df
  • Overloading factor is defined by the ratio of number of total users to number of REs: λ = J K \lambda = \frac{J}{K} λ=KJ

从上图可以看出, d f = 3 , λ = 150 % d_f =3, \lambda=150 \% df=3,λ=150%

我们使用数学语言来描述SCMA encoder。SCMA encoder可以被定义为映射: f : { 0 , 1 } log ⁡ 2 M → X f: \{0,1\}^{\log_2 M} \rightarrow \mathcal X f:{0,1}log2MX,即 x = f ( b ) \boldsymbol x = f(\boldsymbol b) x=f(b),其中 X ⊂ C K \mathcal X \subset \mathbb C^{K} XCK ∣ X ∣ = M \vert \mathcal X \vert=M X=M x ∈ X \boldsymbol x \in \mathcal X xX是一个稀疏向量,只有 K − N K-N KN个非零元素。指定 c \boldsymbol c c N N N维的复星座点(complex constellation point),对应的星座集合为 C ⊂ C N \mathcal C \subset \mathbb C^{N} CCN,那么从二进制向量到高维星座点的映射为 g : { 0 , 1 } log ⁡ 2 M → C g: \{0,1\}^{\log_2 M} \rightarrow \mathcal C g:{0,1}log2MC,即 c = g ( b ) \boldsymbol c = g(\boldsymbol b) c=g(b),那么SCMA encoder可以表示为
f : ≡ V c = V g ( b ) f : \equiv \boldsymbol V \boldsymbol c = \boldsymbol V g(\boldsymbol b) f:≡Vc=Vg(b)

其中 V \boldsymbol V V为映射矩阵,将在后面介绍。

BS上行接收信号可以表示为:
y = ∑ j = 1 J H j x j + n ∈ C K × 1 \boldsymbol y = \sum_{j=1}^J \boldsymbol H_j \boldsymbol x_j + \boldsymbol n \in \mathbb C^{K \times 1} y=j=1JHjxj+nCK×1

其中 H j = diag ( h j ) \boldsymbol H_j =\text{diag}(\boldsymbol h_j) Hj=diag(hj),且 h j = ( h j , 1 , h j , 2 , ⋯   , h j , K ) T \boldsymbol h_j=(h_{j,1}, h_{j,2}, \cdots, h_{j,K})^T hj=(hj,1,hj,2,,hj,K)T是用户 k k k的信道向量, n ∼ C N ( 0 , N 0 I K ) \boldsymbol n \sim \mathcal {CN}(\boldsymbol 0, N_0 \boldsymbol I_K) nCN(0,N0IK)

我们可以用两种方式来描述SCMA系统:
(1)因子图矩阵(factor graph matrix)
SCMA系统可以被一个 K × J K \times J K×J的因子矩阵 F = ( f 1 , f 2 , ⋯   , f J ) ∈ { 0 , 1 } K × J \boldsymbol F=(\boldsymbol f_1, \boldsymbol f_2, \cdots, \boldsymbol f_J) \in \{0,1\}^{K \times J} F=(f1,f2,,fJ){0,1}K×J表征。 F \boldsymbol F F的每一列 f j \boldsymbol f_j fj定义了用户 j j j发送码字对应的非零位置。
F = [ 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 ] \boldsymbol{F}=\left[ \begin{matrix}{} 1& 1& 1& 0& \begin{matrix} 0& 0\\ \end{matrix}\\ 1& 0& 0& 1& \begin{matrix} 1& 0\\ \end{matrix}\\ 0& 1& 0& 1& \begin{matrix} 0& 1\\ \end{matrix}\\ 0& 0& 1& 0& \begin{matrix} 1& 1\\ \end{matrix}\\ \end{matrix} \right] F= 110010101001011000100111

(2)用户 j j j的映射矩阵
我们用 V = { V j , ∀ j } \mathcal V=\{\boldsymbol V_j, \forall j\} V={Vj,j}来表征SCMA系统,且 f j = diag ( V j V j T ) \boldsymbol f_j = \text{diag}(\boldsymbol V_j \boldsymbol V_j^T) fj=diag(VjVjT),其中 V j \boldsymbol V_j Vj是用户 j j j将发送符号映射到RE上的映射矩阵,例如图中第1个用户的映射矩阵为
V 1 = [ 1 0 0 1 0 0 0 0 ] \boldsymbol{V}_1=\left[ \begin{matrix}{} 1& 0\\ 0& 1\\ 0& 0\\ 0& 0\\ \end{matrix} \right] V1= 10000100

上图对应的因子图为

SCMA映射矩阵的构造

映射矩阵的构造准则如下:

  1. V j ∈ { 0 , 1 } K × N \boldsymbol V_j \in \{0,1\}^{K \times N} Vj{0,1}K×N;
  2. V j ≠ V i ,    ∀ i ≠ j \boldsymbol V_j \neq \boldsymbol V_i, \ \ \forall i \neq j Vj=Vi,  i=j
  3. V j [ ⊘ ] = I N \boldsymbol V_j^{[\oslash] } = \boldsymbol I_N Vj[]=IN, where V j [ ⊘ ] \boldsymbol V_j^{[\oslash] } Vj[] is V j \boldsymbol V_j Vj after removing its all-zero rows.

基于上述构造准则的解是唯一的,简单地可以解释为是一个排列组合问题,即往 I N \boldsymbol I_N IN中插入 N − K N-K NK个全0的行。不难看出,该解具有以下性质:

  1. J = ( K N ) J=\left( \begin{array}{c} K\\ N\\ \end{array} \right) J=(KN)
  2. d F = ( K − 1 N − 1 ) = J N K d_F = \left( \begin{array}{c} K-1 \\ N-1 \\ \end{array} \right) = \frac{JN}{K} dF=(K1N1)=KJN
  3. λ = J K = d f N \lambda = \frac{J}{K}=\frac{d_f}{N} λ=KJ=Ndf
  4. max ⁡ ( 0 , 2 N − K ) ≤ l ≤ N − 1 \max(0, 2N-K) \leq l \leq N-1 max(0,2NK)lN1 where l is the number of the overlapping elements of any two distinct f j \boldsymbol f_j fj vectors.

SCMA与LDS-CDMA的区别

LDS is a special simplified case of the SCMA structure with QAM symbol repetition over multiple tones/subcarriers.

引用

[1] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” in IEEE Communications Magazine, vol. 53, no. 9, pp. 74-81, September 2015, doi: 10.1109/MCOM.2015.7263349.
[2] H. Nikopour and H. Baligh, “Sparse code multiple access,” 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 2013, pp. 332-336, doi: 10.1109/PIMRC.2013.6666156.
[3] M. Rebhi, K. Hassan, K. Raoof and P. Chargé, “Sparse Code Multiple Access: Potentials and Challenges,” in IEEE Open Journal of the Communications Society, vol. 2, pp. 1205-1238, 2021, doi: 10.1109/OJCOMS.2021.3081166.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值