第T1周:实现mnist手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**

🍺 本周任务:

  1. 跑通程序
  2. 了解深度学习是什么

🦾我的环境:

  • 语言环境:Python3.11.7
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.13.0

一、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tf
gpus=tf.config.list_physical_devices("GPU")

if gpus:
    gpu0=gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0,True) #设置GPU现存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets,layers,models

#导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签
(train_images,train_labels),(test_images,test_labels)=datasets.mnist.load_data()

datasets.mnist.load_data() 是一个用于加载MNIST数据集的函数,它属于Python的深度学习库Keras。本项目中由于网速原因,一直无法连接网站下载,后通过百度搜索,找到他人分享的数据下载后放置于自己常用的文件夹中。修改上述代码,在该方法中添加数据集的路径:

(train_images,train_labels),(test_images,test_labels)=datasets.mnist.load_data('D:\THE MNIST DATABASE\T1\mnist.npz')

3. 归一化

数据归一化作用

  • 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确
  • 加快学习算法的收敛速度
train_images,test_images=train_images/255.0,test_images/255.0
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

运行结果:

((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))

4. 可视化图片

import matplotlib.pyplot as plt

# 将数据集前20个图片数据可视化显示
# 进行图像大小为20宽、5长的绘图(单位为英寸inch)
plt.figure(figsize=(20,5))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分成5行10列,绘制第i+1个子图。
    plt.subplot(2,10,i+1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示子图网格线
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i],fontsize=20)
# 显示图片
plt.show()

运行结果:

5. 调整图片格式 

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

运行结果:

((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))

二、构建CNN网络模型

网络结构图:

#创建并设置卷积神经网络
#卷积层:通过卷积操作对输入图像进行降维和特征抽取
#池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
#全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model=models.Sequential([
    #设置二位卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLU函数,input_shape参数将图层的输入形状设置为(28,28,1)
    #ReLU函数作为激活函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层。
    #相比其他函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而并不会对模型的泛化准确度造成显著影响。
    layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)),
    #池化层1,2*2采样
    layers.MaxPooling2D((2,2)),
    #设置二维卷积层2,设置64个3*3卷积核,activation参数将激活函数设置为ReLU函数
    layers.Conv2D(64,(3,3),activation='relu'),
    #池化层2,2*2采样
    layers.MaxPooling2D((2,2)),
    #Flatten层,连接卷积层与全连接层
    layers.Flatten(),
    #全连接层,特征进一步提取,64为输出空间的维数,activation参数将激活函数设置为ReLU函数
    layers.Dense(64,activation='relu'),
    #输出层,输出预期结果,10为输出空间的维数
    layers.Dense(10)
])
#打印网络结构
model.summary()

 运行结果:

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 26, 26, 32)        320       
                                                                 
 max_pooling2d (MaxPooling2  (None, 13, 13, 32)        0         
 D)                                                              
                                                                 
 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496     
                                                                 
 max_pooling2d_1 (MaxPoolin  (None, 5, 5, 64)          0         
 g2D)                                                            
                                                                 
 flatten (Flatten)           (None, 1600)              0         
                                                                 
 dense (Dense)               (None, 64)                102464    
                                                                 
 dense_1 (Dense)             (None, 10)                650       
                                                                 
=================================================================
Total params: 121930 (476.29 KB)
Trainable params: 121930 (476.29 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

三、编译模型

#model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
    #设置优化器为Adam
    optimizer='adam',
    #设置损失函数为交叉熵损失函数
    #from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    #设置性能指标列表,将在模型训练时监控列表中的指标
    metrics=['accuracy']
)

四、训练模型

history=model.fit(
    #输入训练集图片
    train_images,
    #输入训练集标签
    train_labels,
    #设置10个epoch,每一个epoch都将会把所有的数据输入模型完成一次训练
    epochs=10,
    #设置验证集
    validation_data=(test_images,test_labels)
)

运行结果:

Epoch 1/10
1875/1875 [==============================] - 20s 10ms/step - loss: 0.7279 - accuracy: 0.7682 - val_loss: 0.2781 - val_accuracy: 0.9148
Epoch 2/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.2478 - accuracy: 0.9251 - val_loss: 0.1907 - val_accuracy: 0.9418
Epoch 3/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1786 - accuracy: 0.9464 - val_loss: 0.1435 - val_accuracy: 0.9571
Epoch 4/10
1875/1875 [==============================] - 18s 10ms/step - loss: 0.1421 - accuracy: 0.9572 - val_loss: 0.1123 - val_accuracy: 0.9657
Epoch 5/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1172 - accuracy: 0.9643 - val_loss: 0.0929 - val_accuracy: 0.9711
Epoch 6/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.1022 - accuracy: 0.9689 - val_loss: 0.0880 - val_accuracy: 0.9707
Epoch 7/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.0900 - accuracy: 0.9720 - val_loss: 0.0780 - val_accuracy: 0.9751
Epoch 8/10
1875/1875 [==============================] - 17s 9ms/step - loss: 0.0791 - accuracy: 0.9751 - val_loss: 0.0675 - val_accuracy: 0.9796
Epoch 9/10
1875/1875 [==============================] - 18s 9ms/step - loss: 0.0747 - accuracy: 0.9771 - val_loss: 0.0632 - val_accuracy: 0.9808
Epoch 10/10
1875/1875 [==============================] - 18s 9ms/step - loss: 0.0667 - accuracy: 0.9795 - val_loss: 0.0652 - val_accuracy: 0.9795

五、预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率(并非概率),out数字越大可能性越大,仅此而已。 

plt.imshow(test_images[1])

 运行结果:


输出测试集中第一张图片的预测结果 

pre=model.predict(test_images) #对所有测试图片进行预测
pre[1] #输出第一张图片的预测结果

 运行结果:

313/313 [==============================] - 1s 3ms/step
array([  4.7983813 ,   4.407933  ,  13.622525  ,   1.7443753 ,
        -8.688624  ,  -7.48076   ,   0.22793987, -13.237207  ,
        -0.4568601 , -17.50975   ], dtype=float32)

六、心得体会

熟悉了TensorFlow的建模过程,了解了TensorFlow中各种方法的使用。

  • 16
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值