深度学习第P8周:YOLOv5-C3模块实现

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**

 本次我将利用YOLOv5算法中的C3模块搭建网络

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Notebook
  • 数据集:天气识别数据集 
  • 深度学习环境:Pytorch
    • torch==2.3.1+cu188
    • torchvision==0.18.1+cu118

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import warnings
warnings.filterwarnings("ignore")  #忽略警告信息

import torch
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

运行结果:

device(type='cuda')

2. 导入数据

import pathlib

data_dir='D:\THE MNIST DATABASE\weather_photos'
data_dir=pathlib.Path(data_dir)

data_paths=list(data_dir.glob('*'))
classNames=[str(path).split("\\")[3] for path in data_paths]
classNames

运行结果:

['cloudy', 'rain', 'shine', 'sunrise']

3. 随机查看图片

import matplotlib.pyplot as plt
import random,PIL
from PIL import Image
data_path2=list(data_dir.glob('*/*'))
plt.figure(figsize=(20,4))
for i in range(20):
    plt.subplot(2,10,i+1)
    plt.axis('off')
    image=random.choice(data_path2)
    plt.title(image.parts[-2])
    plt.imshow(Image.open(str(image)))

运行结果:

 4. 图片预处理

total_dir='D:\THE MNIST DATABASE\weather_photos'

import torchvision
import torchvision.transforms as transforms
from torchvision import transforms,datasets
train_transforms=transforms.Compose([ 
    transforms.Resize([224,224]),   # 将输入图片resize成统一尺寸
    transforms.RandomHorizontalFlip(),   # 随机水平翻转
    transforms.ToTensor(),     # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(     # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485,0.456,0.406],
        std=[0.229,0.224,0.225])
])

total_data=datasets.ImageFolder(total_dir,transform=train_transforms)
total_data

运行结果:

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: D:\THE MNIST DATABASE\weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               RandomHorizontalFlip(p=0.5)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

映射输出:

total_data.class_to_idx

运行结果:

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

5. 划分数据集

train_size=int(0.8*len(total_data))
test_size=len(total_data)-train_size
train_dataset,test_dataset=torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

 运行结果:

(<torch.utils.data.dataset.Subset at 0x231a814ad50>,
 <torch.utils.data.dataset.Subset at 0x231abf18450>)

显示训练集和测试集的数据数量:

train_size,test_size

运行结果:

(900, 225)

6. 加载数据集

batch_size=4

train_dl=torch.utils.data.DataLoader(
    train_dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=1)
test_dl=torch.utils.data.DataLoader(
    test_dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=1)

显示测试集的情况:

for x,y in test_dl:
    print("Shape of x [N,C,H,W]:",x.shape)
    print("Shape of y:",y.shape,y.dtype)
    break

运行结果:

Shape of x [N,C,H,W]: torch.Size([4, 3, 224, 224])
Shape of y: torch.Size([4]) torch.int64

二、搭建包含C3模块的模型

1. 搭建模型

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2) 
        
        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = model_K().to(device)
model

 运行结果:

Using cuda device
model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2. 查看模型详情

import torchsummary as summary
summary.summary(model,(3,224,224))

运行结果:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 112, 112]             864
       BatchNorm2d-2         [-1, 32, 112, 112]              64
              SiLU-3         [-1, 32, 112, 112]               0
              Conv-4         [-1, 32, 112, 112]               0
            Conv2d-5         [-1, 32, 112, 112]           1,024
       BatchNorm2d-6         [-1, 32, 112, 112]              64
              SiLU-7         [-1, 32, 112, 112]               0
              Conv-8         [-1, 32, 112, 112]               0
            Conv2d-9         [-1, 32, 112, 112]           1,024
      BatchNorm2d-10         [-1, 32, 112, 112]              64
             SiLU-11         [-1, 32, 112, 112]               0
             Conv-12         [-1, 32, 112, 112]               0
           Conv2d-13         [-1, 32, 112, 112]           9,216
      BatchNorm2d-14         [-1, 32, 112, 112]              64
             SiLU-15         [-1, 32, 112, 112]               0
             Conv-16         [-1, 32, 112, 112]               0
       Bottleneck-17         [-1, 32, 112, 112]               0
           Conv2d-18         [-1, 32, 112, 112]           1,024
      BatchNorm2d-19         [-1, 32, 112, 112]              64
             SiLU-20         [-1, 32, 112, 112]               0
             Conv-21         [-1, 32, 112, 112]               0
           Conv2d-22         [-1, 32, 112, 112]           9,216
      BatchNorm2d-23         [-1, 32, 112, 112]              64
             SiLU-24         [-1, 32, 112, 112]               0
             Conv-25         [-1, 32, 112, 112]               0
       Bottleneck-26         [-1, 32, 112, 112]               0
           Conv2d-27         [-1, 32, 112, 112]           1,024
      BatchNorm2d-28         [-1, 32, 112, 112]              64
             SiLU-29         [-1, 32, 112, 112]               0
             Conv-30         [-1, 32, 112, 112]               0
           Conv2d-31         [-1, 32, 112, 112]           9,216
      BatchNorm2d-32         [-1, 32, 112, 112]              64
             SiLU-33         [-1, 32, 112, 112]               0
             Conv-34         [-1, 32, 112, 112]               0
       Bottleneck-35         [-1, 32, 112, 112]               0
           Conv2d-36         [-1, 32, 112, 112]           1,024
      BatchNorm2d-37         [-1, 32, 112, 112]              64
             SiLU-38         [-1, 32, 112, 112]               0
             Conv-39         [-1, 32, 112, 112]               0
           Conv2d-40         [-1, 64, 112, 112]           4,096
      BatchNorm2d-41         [-1, 64, 112, 112]             128
             SiLU-42         [-1, 64, 112, 112]               0
             Conv-43         [-1, 64, 112, 112]               0
               C3-44         [-1, 64, 112, 112]               0
           Linear-45                  [-1, 100]      80,281,700
             ReLU-46                  [-1, 100]               0
           Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------
​

三、 训练模型

1. 编写训练函数

def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset) #训练集大小
    num_batches=len(dataloader)  #批次数目
    
    train_loss,train_acc=0,0  #初始化损失和正确率
    
    for x,y in dataloader:    #获取图片和标签
        x,y=x.to(device),y.to(device)
        
        #计算预测误差
        pred=model(x)  #网络输出
        loss=loss_fn(pred,y) #计算网络输出和真实值之间的差距
        
        #反向传播
        optimizer.zero_grad()  #grad属性归零
        loss.backward()  #反向传播
        optimizer.step()  #每一步自动更新
        
        #记录acc与loss
        train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss+=loss.item()
        
    train_size/=size
    train_loss/=num_batches
    
    return train_acc,train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset)  #测试集的大小
    num_batches=len(dataloader)   #批次数目
    test_loss,test_acc=0,0
    
    #当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target=imgs.to(device),target.to(device)
            
            #计算loss
            target_pred=model(imgs)
            loss=loss_fn(target_pred,target)
            
            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
            
    test_acc/=size
    test_loss/=num_batches
    
    return test_acc,test_loss

3. 正式训练

import copy

optimizer=torch.optim.Adam(model.parameters(),lr=1e-4)
loss_fn=nn.CrossEntropyLoss()  #创建损失函数

epochs=20

train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]

best_acc=0  #设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,optimizer)
    
    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)
    
    #保存最佳模型到 best_model
    if epoch_test_acc>best_acc:
        best_acc=epoch_test_acc
        best_model=copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    #获取当前学习率
    lr=optimizer.state_dict()['param_groups'][0]['lr']
    
    template=('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')
    print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,
                          epoch_test_acc*100,epoch_test_loss,lr))
    
#保存最佳模型到文件中
PATH=r'C:\Users\Administrator\PycharmProjects\pytorchProject1\第P8周:YOLOv5-C3模块实现\p8_model.pth'  #保存的参数文件名
torch.save(model.state_dict,PATH)

print('Done')

运行结果:

Epoch: 1,Train_acc:86.1%,Train_loss:0.478,Test_acc:79.6%,Test_loss:0.977,Lr:1.00E-04
Epoch: 2,Train_acc:90.4%,Train_loss:0.360,Test_acc:88.9%,Test_loss:0.324,Lr:1.00E-04
Epoch: 3,Train_acc:91.3%,Train_loss:0.285,Test_acc:84.4%,Test_loss:0.789,Lr:1.00E-04
Epoch: 4,Train_acc:91.7%,Train_loss:0.296,Test_acc:83.6%,Test_loss:0.525,Lr:1.00E-04
Epoch: 5,Train_acc:93.9%,Train_loss:0.188,Test_acc:87.6%,Test_loss:0.548,Lr:1.00E-04
Epoch: 6,Train_acc:95.7%,Train_loss:0.178,Test_acc:89.8%,Test_loss:0.383,Lr:1.00E-04
Epoch: 7,Train_acc:96.1%,Train_loss:0.111,Test_acc:88.4%,Test_loss:0.461,Lr:1.00E-04
Epoch: 8,Train_acc:97.6%,Train_loss:0.083,Test_acc:88.4%,Test_loss:0.595,Lr:1.00E-04
Epoch: 9,Train_acc:96.4%,Train_loss:0.139,Test_acc:89.3%,Test_loss:0.343,Lr:1.00E-04
Epoch:10,Train_acc:97.9%,Train_loss:0.061,Test_acc:88.0%,Test_loss:0.396,Lr:1.00E-04
Epoch:11,Train_acc:98.6%,Train_loss:0.061,Test_acc:92.0%,Test_loss:0.361,Lr:1.00E-04
Epoch:12,Train_acc:97.6%,Train_loss:0.079,Test_acc:91.1%,Test_loss:0.410,Lr:1.00E-04
Epoch:13,Train_acc:97.0%,Train_loss:0.093,Test_acc:90.7%,Test_loss:0.562,Lr:1.00E-04
Epoch:14,Train_acc:96.2%,Train_loss:0.201,Test_acc:89.3%,Test_loss:0.398,Lr:1.00E-04
Epoch:15,Train_acc:98.1%,Train_loss:0.078,Test_acc:88.0%,Test_loss:0.639,Lr:1.00E-04
Epoch:16,Train_acc:98.7%,Train_loss:0.080,Test_acc:91.1%,Test_loss:0.394,Lr:1.00E-04
Epoch:17,Train_acc:99.1%,Train_loss:0.033,Test_acc:89.8%,Test_loss:0.459,Lr:1.00E-04
Epoch:18,Train_acc:98.3%,Train_loss:0.053,Test_acc:91.1%,Test_loss:0.442,Lr:1.00E-04
Epoch:19,Train_acc:98.3%,Train_loss:0.053,Test_acc:89.3%,Test_loss:0.509,Lr:1.00E-04
Epoch:20,Train_acc:99.0%,Train_loss:0.020,Test_acc:89.8%,Test_loss:0.481,Lr:1.00E-04
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.rcParams['figure.dpi']=300

epochs_range=range(epochs)
plt.figure(figsize=(12,3))

plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label='Training Accuracy')
plt.plot(epochs_range,test_acc,label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label='Training Loss')
plt.plot(epochs_range,test_loss,label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

2. 模型评估 

best_model.eval()
epoch_test_acc,epoch_test_loss=test(test_dl,best_model,loss_fn)
epoch_test_acc,epoch_test_loss

运行结果:

(0.9155555555555556, 0.37511309209529703)

3. 指定图片进行预测 

建立预测模型:

from PIL import Image

classes=list(total_data.class_to_idx)

def predict_one_image(image_path,model,transform,classes):
    
    test_img=Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  #展示预测的图片
    
    test_img=transform(test_img)
    img=test_img.to(device).unsqueeze(0)
    
    model.eval()
    output=model(img)
    
    _,pred=torch.max(output,1)
    pred_class=classes[pred]
    print(f'预测结果是:{pred_class}')

预测图片:

predict_one_image(image_path=r'D:\THE MNIST DATABASE\weather_photos\cloudy\cloudy1.jpg',
                  model=model,transform=train_transforms,classes=classes)

运行结果:

预测结果是:cloudy

五、心得体会 

加入C3模块后,模型的准确率提升比较明显,仅仅20轮的情况下已经达到原来模型40轮的准确率。 

  • 13
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值