【笔记】Hierarchically-Refined Label Attention Network for Sequence Labeling

Hierarchically-Refined Label Attention Network for Sequence Labeling.

这篇文章对传统的序列标注模型(BiLSTM-CRF,BiLSTM-softmax)进行了更改,采用注意力机制来辅助reference,提高精确度和速度。

背景:
CRF属于Log-Linear模型范畴,参数估计时,前向传播和后向传播通常用维特比算法求解。时间复杂度偏高。

本文设计了一个LAN神经网层,如图所示,一共有2层,每层包含一个BiLSTM 的编码层 和一个 标签注意力inference 层。
编码层通过BiLSTM对文本进行编码。
inference层,计算标签同编码层输出的注意力权重,然后同编码层输出隐层拼接后,在作为输入进入到第二个LAN层。

在这里插入图片描述

相当于reference这里用BiLSTM同标签的注意力权重来做

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值