Hierarchically-Refined Label Attention Network for Sequence Labeling.
这篇文章对传统的序列标注模型(BiLSTM-CRF,BiLSTM-softmax)进行了更改,采用注意力机制来辅助reference,提高精确度和速度。
背景:
CRF属于Log-Linear模型范畴,参数估计时,前向传播和后向传播通常用维特比算法求解。时间复杂度偏高。
本文设计了一个LAN神经网层,如图所示,一共有2层,每层包含一个BiLSTM 的编码层 和一个 标签注意力inference 层。
编码层通过BiLSTM对文本进行编码。
inference层,计算标签同编码层输出的注意力权重,然后同编码层输出隐层拼接后,在作为输入进入到第二个LAN层。
相当于reference这里用BiLSTM同标签的注意力权重来做