基波 谐波
在振动学里认为一个振动产生的波是一个具有一定频率的振幅最大的正弦波叫基波。 这些高于基波频率的小波就叫作谐波。(谐波的振幅要小于基波振幅)
基波(Fundamental Frequency)
定义:基波是构成复杂周期性波形的最低频率的正弦波分量。它是该波形的主要成分,决定了整个波形的基本周期和频率。在音乐中,基波决定了我们所感知到的音高。
特性:对于任何周期性波形,基波是频率最低的那个分量。对于一个完整的周期内,基波完成一个完整的振动周期。
谐波(Harmonics)
定义:谐波是频率是基波整数倍的波形分量。如果基波的频率是f,那么第n个谐波的频率就是n×f(n是整数,n=2,3,4,…)。
特性:谐波贡献于波形的形状和音色,但不改变波形的基本频率。谐波的存在使得复杂波形与单纯的正弦波相区别,赋予音乐声音和电子信号以独特的特性。
如二次谐波的频率是基波频率的两倍,三次谐波的频率是基波频率的三倍。
在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
傅里叶变换(Fourier Transformation)
傅立叶这个人(Fourier)提出了两个很牛的结论:
周期函数都可以表示为成谐波关系的正弦函数的加权和;
非周期函数都可以用正弦函数的加权积分表示。
而这个结论正是傅立叶变换的真谛,用数学表达式写出来便是:
F ( w ) = ∫ − ∞ ∞ f ( t ) e − j w t d t