向量叉乘算子、点乘算子与矩阵运算的关系

本文详细探讨了向量叉乘的性质及其与矩阵运算的关系,通过MATLAB测试验证了向量叉乘公式及矩阵与向量点乘的一致性。展示了如何使用符号计算来简化复杂的向量和矩阵运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量叉乘

( a × b ) × c = b ( a ⋅ c ) − a ( b ⋅ c ) (a×b)×c = b(a·c) - a(b·c) (a×b)×c=b(ac)a(bc)

a × ( b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) a×(b×c) = b(a·c) - c(a·b) a×(b×c)=b(ac)c(ab)

a × b = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ b 1 b 2 b 3 ] a \times b=\left[\begin{array}{ccc} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{array}\right]\left[\begin{array}{l} b_{1} \\ b_{2} \\ b_{3} \end{array}\right] a×b=0a3a2a30a1a2a10b1b2b3

a × b = − [ b × ] a a×b=-[b×]a a×b=[b×]a

运算测试
>> syms x1 y1 z1 x2 y2 z2 x3 y3 z3 real
>> clear
>> syms a1 a2 a3 b1 b2 b3 x y z real
>> clear
>> syms a1 a2 a3 b1 b2 b3 c1 c2 c3 real
>> A_=[a1;a2;a3];
>> B_ = [b1; b2; b3];
>> C_ = [c1;c2;c3];
>> test1 = cross(A_,cross(B_,C_))
test1 =
   a2*(b1*c2 - b2*c1) + a3*(b1*c3 - b3*c1)
   a3*(b2*c3 - b3*c2) - a1*(b1*c2 - b2*c1)
 - a1*(b1*c3 - b3*c1) - a2*(b2*c3 - b3*c2)
>> A = [0 -a3 a2;a3 0 -a1;-a2 a1 0]
A =
[   0, -a3,  a2]
[  a3,   0, -a1]
[ -a2,  a1,   0]
>>  B = [0 -b3 b2;b3 0 -b1;-b2 b1 0]
B =
[   0, -b3,  b2]
[  b3,   0, -b1]
[ -b2,  b1,   0]
>> C=C_
C =
 c1
 c2
 c3
>> test2=A*B*C
test2 =
 a2*b1*c2 - c1*(a2*b2 + a3*b3) + a3*b1*c3
 a1*b2*c1 - c2*(a1*b1 + a3*b3) + a3*b2*c3
 a1*b3*c1 - c3*(a1*b1 + a2*b2) + a2*b3*c2
>> simplify(test1-test2)
ans =
 0
 0
 0
 >> test3=cross(cross(A_,B_),C_)
test3 =
 - c2*(a1*b2 - a2*b1) - c3*(a1*b3 - a3*b1)
   c1*(a1*b2 - a2*b1) - c3*(a2*b3 - a3*b2)
   c1*(a1*b3 - a3*b1) + c2*(a2*b3 - a3*b2)
>> simplify(test2-test3)
ans =
 a1*b2*c2 - a2*b2*c1 + a1*b3*c3 - a3*b3*c1
 a2*b1*c1 - a1*b1*c2 + a2*b3*c3 - a3*b3*c2
 a3*b1*c1 - a1*b1*c3 - a2*b2*c3 + a3*b2*c2

############################################################
############              a×b=-[b×]a         ###############
############################################################

>> syms a1 a2 a3 b1 b2 b3 real
>> A=[a1;a2;a3]
A =
 a1
 a2
 a3
>> B=[b1;b2;b3]
B =
 b1
 b2
 b3
>> B_=[0 -b3 b2;
b3 0 -b1;
-b2 b1 0]
B_ =
[   0, -b3,  b2]
[  b3,   0, -b1]
[ -b2,  b1,   0]
>> simplify(cross(A,B)-(-B_*A))
ans =
 0
 0
 0
结论

a × ( b × c ) = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 − b 3 b 2 b 3 0 − b 1 − b 2 b 1 0 ] [ c 1 c 2 c 3 ] a \times(b \times c)=\left[\begin{array}{ccc} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{array}\right]\left[\begin{array}{ccc} 0 & -b_{3} & b_{2} \\ b_{3} & 0 & -b_{1} \\ -b_{2} & b_{1} & 0 \end{array}\right]\left[\begin{array}{c} c_{1} \\ c_{2} \\ c_{3} \end{array}\right] a×(b×c)=0a3a2a30a1a2a100b3b2b30b1b2b10c1c2c3

矩阵与向量点乘

变量

在这里插入图片描述

算子

在这里插入图片描述

测试
>> I=[Ixx Ixy Ixz;Ixy Iyy Iyz;Ixz Iyz Izz]
I =
[ Ixx, Ixy, Ixz]
[ Ixy, Iyy, Iyz]
[ Ixz, Iyz, Izz]

>> I_=[Ixx Ixy Ixz Iyy Iyz Izz]'
I_ =
 Ixx
 Ixy
 Ixz
 Iyy
 Iyz
 Izz
 
>> w_
w_ =
[ c1, c2, c3,  0,  0,  0]
[  0, c1,  0, c2, c3,  0]
[  0,  0, c1,  0, c2, c3]

>> C_ = [0 -c3 c2;
c3 0 -c1;
-c2 c1 0]
C_ =
[   0, -c3,  c2]
[  c3,   0, -c1]
[ -c2,  c1,   0]

>> simplify(C_*w_*I_-cross(C,I*C))
ans =
 0
 0
 0
结论

在这里插入图片描述

### 向量处理在图形或数据处理中的作用 向量处理是计算机图形学和数据处理领域的重要组成部分,它涉及一系列基于数学运算的操作来实现高效的数据计算。以下是关于向量处理的一些核心概念及其应用: #### 图形处理中的向量操作 在图形处理中,向量被广泛用于表示几何对象的方向、大小以及位置关系。这些操作通常包括加法、减法、以及其他线性代数变换。例如,在三维空间中,顶的位置可以通过向量定义,并通过矩阵变换完成平移、旋转和缩放等操作[^1]。 此外,现代 GPU 的渲染管线依赖于高效的向量计算能力来进行复杂的场景绘制。特别是在 vertex processing 阶段之后,可能会涉及到 tessellation 和 geometry shading 等高级功能。这些阶段允许开发者进一步细化网格结构或将额外的效果应用于模型表面[^2]。 #### 数据处理中的向量化方法 除了图形领域外,向量化技术也被大量运用于科学计算机器学习框架之中。相比传统的逐元素迭代方式,采用 SIMD (Single Instruction Multiple Data) 技术可以显著提升性能表现。许多库如 NumPy 或 TensorFlow 提供内置函数支持批量化的张量算子调用,从而简化开发流程并优化运行效率。 对于需要分配显存资源的应用程序来说,则需要注意遵循特定规则以确保兼容性和稳定性。比如当指定 memory types 及其 properties 时,最好能覆盖到所有潜在需求情况;如果仅能满足部分条件的话,则至少要保证能够 fallback 到 general purpose 类型上去[^3]。 ```python import numpy as np # Example of vectorized operation using Numpy library. array_a = np.array([1, 2, 3]) array_b = np.array([4, 5, 6]) result_vector_addition = array_a + array_b print(result_vector_addition) ``` 上述代码片段展示了如何利用 Python 中的 NumPy 库执行矢量相加操作,这正是向量处理的一个简单实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值