向量叉乘
( a × b ) × c = b ( a ⋅ c ) − a ( b ⋅ c ) (a×b)×c = b(a·c) - a(b·c) (a×b)×c=b(a⋅c)−a(b⋅c)
a × ( b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) a×(b×c) = b(a·c) - c(a·b) a×(b×c)=b(a⋅c)−c(a⋅b)
a × b = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ b 1 b 2 b 3 ] a \times b=\left[\begin{array}{ccc} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{array}\right]\left[\begin{array}{l} b_{1} \\ b_{2} \\ b_{3} \end{array}\right] a×b=⎣⎡0a3−a2−a30a1a2−a10⎦⎤⎣⎡b1b2b3⎦⎤
a × b = − [ b × ] a a×b=-[b×]a a×b=−[b×]a
运算测试
>> syms x1 y1 z1 x2 y2 z2 x3 y3 z3 real
>> clear
>> syms a1 a2 a3 b1 b2 b3 x y z real
>> clear
>> syms a1 a2 a3 b1 b2 b3 c1 c2 c3 real
>> A_=[a1;a2;a3];
>> B_ = [b1; b2; b3];
>> C_ = [c1;c2;c3];
>> test1 = cross(A_,cross(B_,C_))
test1 =
a2*(b1*c2 - b2*c1) + a3*(b1*c3 - b3*c1)
a3*(b2*c3 - b3*c2) - a1*(b1*c2 - b2*c1)
- a1*(b1*c3 - b3*c1) - a2*(b2*c3 - b3*c2)
>> A = [0 -a3 a2;a3 0 -a1;-a2 a1 0]
A =
[ 0, -a3, a2]
[ a3, 0, -a1]
[ -a2, a1, 0]
>> B = [0 -b3 b2;b3 0 -b1;-b2 b1 0]
B =
[ 0, -b3, b2]
[ b3, 0, -b1]
[ -b2, b1, 0]
>> C=C_
C =
c1
c2
c3
>> test2=A*B*C
test2 =
a2*b1*c2 - c1*(a2*b2 + a3*b3) + a3*b1*c3
a1*b2*c1 - c2*(a1*b1 + a3*b3) + a3*b2*c3
a1*b3*c1 - c3*(a1*b1 + a2*b2) + a2*b3*c2
>> simplify(test1-test2)
ans =
0
0
0
>> test3=cross(cross(A_,B_),C_)
test3 =
- c2*(a1*b2 - a2*b1) - c3*(a1*b3 - a3*b1)
c1*(a1*b2 - a2*b1) - c3*(a2*b3 - a3*b2)
c1*(a1*b3 - a3*b1) + c2*(a2*b3 - a3*b2)
>> simplify(test2-test3)
ans =
a1*b2*c2 - a2*b2*c1 + a1*b3*c3 - a3*b3*c1
a2*b1*c1 - a1*b1*c2 + a2*b3*c3 - a3*b3*c2
a3*b1*c1 - a1*b1*c3 - a2*b2*c3 + a3*b2*c2
############################################################
############ a×b=-[b×]a ###############
############################################################
>> syms a1 a2 a3 b1 b2 b3 real
>> A=[a1;a2;a3]
A =
a1
a2
a3
>> B=[b1;b2;b3]
B =
b1
b2
b3
>> B_=[0 -b3 b2;
b3 0 -b1;
-b2 b1 0]
B_ =
[ 0, -b3, b2]
[ b3, 0, -b1]
[ -b2, b1, 0]
>> simplify(cross(A,B)-(-B_*A))
ans =
0
0
0
结论
a × ( b × c ) = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 − b 3 b 2 b 3 0 − b 1 − b 2 b 1 0 ] [ c 1 c 2 c 3 ] a \times(b \times c)=\left[\begin{array}{ccc} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{array}\right]\left[\begin{array}{ccc} 0 & -b_{3} & b_{2} \\ b_{3} & 0 & -b_{1} \\ -b_{2} & b_{1} & 0 \end{array}\right]\left[\begin{array}{c} c_{1} \\ c_{2} \\ c_{3} \end{array}\right] a×(b×c)=⎣⎡0a3−a2−a30a1a2−a10⎦⎤⎣⎡0b3−b2−b30b1b2−b10⎦⎤⎣⎡c1c2c3⎦⎤
矩阵与向量点乘
变量
算子
测试
>> I=[Ixx Ixy Ixz;Ixy Iyy Iyz;Ixz Iyz Izz]
I =
[ Ixx, Ixy, Ixz]
[ Ixy, Iyy, Iyz]
[ Ixz, Iyz, Izz]
>> I_=[Ixx Ixy Ixz Iyy Iyz Izz]'
I_ =
Ixx
Ixy
Ixz
Iyy
Iyz
Izz
>> w_
w_ =
[ c1, c2, c3, 0, 0, 0]
[ 0, c1, 0, c2, c3, 0]
[ 0, 0, c1, 0, c2, c3]
>> C_ = [0 -c3 c2;
c3 0 -c1;
-c2 c1 0]
C_ =
[ 0, -c3, c2]
[ c3, 0, -c1]
[ -c2, c1, 0]
>> simplify(C_*w_*I_-cross(C,I*C))
ans =
0
0
0